Grothendieck-Neeman duality and the Wirthmueller isomorphism

We clarify the relationship between Grothendieck duality a la Neeman and the Wirthmueller isomorphism a la Fausk-Hu-May. We exhibit an interesting pattern of symmetry in the existence of adjoint functors between compactly generated tensor-triangulated categories, which leads to a surprising trichoto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2016-08, Vol.152 (8), p.1740-1776
Hauptverfasser: Balmer, Paul, Dell'Ambrogio, Ivo, Sanders, Beren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We clarify the relationship between Grothendieck duality a la Neeman and the Wirthmueller isomorphism a la Fausk-Hu-May. We exhibit an interesting pattern of symmetry in the existence of adjoint functors between compactly generated tensor-triangulated categories, which leads to a surprising trichotomy: there exist either exactly three adjoints, exactly five, or infinitely many. We highlight the importance of so-called relative dualizing objects and explain how they give rise to dualities on canonical subcategories. This yields a duality theory rich enough to capture the main features of Grothendieck duality in algebraic geometry, of generalized Pontryagin-Matlis duality a la Dwyer-Greenless-Iyengar in the theory of ring spectra, and of Brown-Comenetz duality a la Neeman in stable homotopy theory.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X16007375