Grothendieck-Neeman duality and the Wirthmueller isomorphism
We clarify the relationship between Grothendieck duality a la Neeman and the Wirthmueller isomorphism a la Fausk-Hu-May. We exhibit an interesting pattern of symmetry in the existence of adjoint functors between compactly generated tensor-triangulated categories, which leads to a surprising trichoto...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2016-08, Vol.152 (8), p.1740-1776 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We clarify the relationship between Grothendieck duality a la Neeman and the Wirthmueller isomorphism a la Fausk-Hu-May. We exhibit an interesting pattern of symmetry in the existence of adjoint functors between compactly generated tensor-triangulated categories, which leads to a surprising trichotomy: there exist either exactly three adjoints, exactly five, or infinitely many. We highlight the importance of so-called relative dualizing objects and explain how they give rise to dualities on canonical subcategories. This yields a duality theory rich enough to capture the main features of Grothendieck duality in algebraic geometry, of generalized Pontryagin-Matlis duality a la Dwyer-Greenless-Iyengar in the theory of ring spectra, and of Brown-Comenetz duality a la Neeman in stable homotopy theory. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X16007375 |