Effects of filament cross section on the performance of automotive upholstery fabrics
Aim of this study was to investigate the effects of filament cross section on the performance of automotive upholstery fabrics. Thirty-six yarns were produced by changing the cross section of poly(ethylene terephthalate) fibers (round, octolobal and W-channel) and the air-jet texturing parameters (o...
Gespeichert in:
Veröffentlicht in: | Journal of industrial textiles 2016-09, Vol.46 (3), p.756-770 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aim of this study was to investigate the effects of filament cross section on the performance of automotive upholstery fabrics. Thirty-six yarns were produced by changing the cross section of poly(ethylene terephthalate) fibers (round, octolobal and W-channel) and the air-jet texturing parameters (overfeed and number of core and effect yarns). After heat-setting and dyeing the yarns were woven into fabrics and laminated. Performance tests of both the air-jet textured yarns and the fabrics were carried out. It was observed that W-channel gave the most different air-jet textured yarn structure. It formed a bulky, uneven yarn structure with many open loops. No pronounced difference in the recovery from strain behaviors of the air-jet textured yarns was recorded. For all the cross-section types, increase in the looped structure resulted in higher permanent elongation values. In case of fabrics, all the filament cross sections gave satisfactory results for the light fastness and the abrasion resistance tests. It was concluded that changing filament cross section had the most significant effect on air permeability. W-channel gave the lowest air permeability, while octolobal gave the highest one. |
---|---|
ISSN: | 1528-0837 1530-8057 |
DOI: | 10.1177/1528083715598652 |