Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA)

For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a poten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2016-09, Vol.101, p.510-518
Hauptverfasser: Krahnstöver, Therese, Plattner, Julia, Wintgens, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample’s mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample’s PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0.1 mg/L. The method showed a linearity coefficient of 0.98 and relative standard deviations of 10%, using small water sample volumes between 0.3 and 0.6 L. [Display omitted] •TGA is a suitable technique for differentiating PAC from biological background matrix.•Temperature stable quartz filters were found suitable for sample preparation and TGA.•TGA accuracy was improved by using a heating method consisting of N2 and O2 atmospheres.•A correlation was found to calculate a sample’s PAC content based o
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2016.06.008