Thermal equation of state of hcp‐iron: Constraint on the density deficit of Earth's solid inner core

We conducted high‐pressure experiments on hexagonal close packed iron (hcp‐Fe) in MgO, NaCl, and Ne pressure‐transmitting media and found general agreement among the experimental data at 300 K that yield the best fitted values of the bulk modulus K0 = 172.7(±1.4) GPa and its pressure derivative K0′ ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2016-07, Vol.43 (13), p.6837-6843
Hauptverfasser: Fei, Yingwei, Murphy, Caitlin, Shibazaki, Yuki, Shahar, Anat, Huang, Haijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We conducted high‐pressure experiments on hexagonal close packed iron (hcp‐Fe) in MgO, NaCl, and Ne pressure‐transmitting media and found general agreement among the experimental data at 300 K that yield the best fitted values of the bulk modulus K0 = 172.7(±1.4) GPa and its pressure derivative K0′ = 4.79(±0.05) for hcp‐Fe, using the third‐order Birch‐Murnaghan equation of state. Using the derived thermal pressures for hcp‐Fe up to 100 GPa and 1800 K and previous shockwave Hugoniot data, we developed a thermal equation of state of hcp‐Fe. The thermal equation of state of hcp‐Fe is further used to calculate the densities of iron along adiabatic geotherms to define the density deficit of the inner core, which serves as the basis for developing quantitative composition models of the Earth's inner core. We determine the density deficit at the inner core boundary to be 3.6%, assuming an inner core boundary temperature of 6000 K. Key Points Intercalibrated pressure scales lead to a consistent compression curve of hcp‐iron up to 300 GPa Thermal equation of state of hcp‐iron is refined by combining static and dynamic data The inner core density deficit is 3.6% at an inner core boundary temperature of 6000 K
ISSN:0094-8276
1944-8007
DOI:10.1002/2016GL069456