Improved Biocompatibility of Novel Biodegradable Scaffold Composed of Poly-L-lactic Acid and Amorphous Calcium Phosphate Nanoparticles in Porcine Coronary Artery
Using poly-L-lactic acid for implantable biodegradable scaffold has potential biocompatibility issue due to its acidic degradation byproducts. We have previously reported that the addition of amorphous calcium phosphate improved poly-L-lactic acid coating biocompatibility. In the present study, poly...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2016-01, Vol.2016 (2016), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using poly-L-lactic acid for implantable biodegradable scaffold has potential biocompatibility issue due to its acidic degradation byproducts. We have previously reported that the addition of amorphous calcium phosphate improved poly-L-lactic acid coating biocompatibility. In the present study, poly-L-lactic acid and poly-L-lactic acid/amorphous calcium phosphate scaffolds were implanted in pig coronary arteries for 28 days. At the follow-up angiographic evaluation, no case of stent thrombosis was observed, and the arteries that were stented with the copolymer scaffold had significantly less inflammation and nuclear factor-κB expression and a greater degree of reendothelialization. The serum levels of vascular endothelial growth factor and nitric oxide, as well the expression of endothelial nitric oxide synthase and platelet-endothelial cell adhesion molecule-1, were also significantly higher. In conclusion, the addition of amorphous calcium phosphate to biodegradable poly-L-lactic acid scaffold minimizes the inflammatory response, promotes the growth of endothelial cells, and accelerates the reendothelialization of the stented coronary arteries. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2016/2710858 |