Least Squares Identification for Hammerstein Multi-input Multi-output Systems Based on the Key-Term Separation Technique

System modeling and parameter estimation are basic for system analysis and controller design. This paper considers the parameter identification problem of a Hammerstein multi-input multi-output (H-MIMO) system. In order to avoid the product terms in the identification model, we derive a pseudo-linea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2016-10, Vol.35 (10), p.3745-3758
Hauptverfasser: Shen, Qianyan, Ding, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:System modeling and parameter estimation are basic for system analysis and controller design. This paper considers the parameter identification problem of a Hammerstein multi-input multi-output (H-MIMO) system. In order to avoid the product terms in the identification model, we derive a pseudo-linear identification model of the H-MIMO system through separating a key term from the output equation of the system and present a hierarchical generalized least squares (LS) algorithm for estimating the parameters of the system. Moreover, we present a new LS algorithm to reduce the computational burden. The proposed algorithms are simple in principle and can achieve a higher computational efficiency than the over-parameterization-based LS estimation algorithm. Finally, we test the proposed algorithms by the simulation example and show their effectiveness.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-015-0211-5