Fate and implication of acetylacetone in photochemical processes for water treatment

Acetylacetone (AA), due to the peculiar enol-keto structures, has attracted wide scientific interests. In terms of photo-decolorization, it works much more efficiently than the well-known H2O2. However, there is very limited information on the photochemistry of AA in aqueous solutions. Herein, the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2016-09, Vol.101, p.233-240
Hauptverfasser: Wu, Bingdang, Zhang, Guoyang, Zhang, Shujuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acetylacetone (AA), due to the peculiar enol-keto structures, has attracted wide scientific interests. In terms of photo-decolorization, it works much more efficiently than the well-known H2O2. However, there is very limited information on the photochemistry of AA in aqueous solutions. Herein, the photolysis kinetics, quantum yield, mass balance, decomposition pathway, and bioavailability of AA during UV irradiation were systematically investigated. It seems that photophysical processes predominated over photochemical ones when AA was irradiated with UV light. Although the quantum yield of AA (0.116) was much lower than that of H2O2 (1.0), the stronger light absorption of AA and the better overlap of the AA absorption spectrum with the solar emission spectrum, as well as the direct energy/electron transfer mechanisms, ensured its high efficiency in photochemical processes. The main degradation products of AA in photochemical processes were similar to the metabolic products in bio-fermentation. Besides, the irradiated AA solution showed a high bioavailability to the cells in activated sludge. Therefore, the UV/AA process might be a promising pre-treatment approach for bio-treatment. The results provide new insights into the photochemical fate and implication of β-diketones in aqueous solutions. [Display omitted] •The photochemistry of acetylacetone (AA) in aqueous solutions was investigated.•The quantum yield of AA was 0.116.•Photophysical processes predominated over photochemical ones in the UV-AA system.•Photolysis products of AA were similar to those in bio-fermentation.•The degradation products of AA could be well utilized by microbes.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2016.05.083