A second-order numerical method for a cell population model with asymmetric division

Population balance models represent an accurate and general way of describing the complicated dynamics of cell growth. In this paper we study the numerical integration of a model for the evolution of a size-structured cell population with asymmetric division. We present and analyze a novel and effic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2017-01, Vol.309, p.522-531
Hauptverfasser: Angulo, O., López-Marcos, J.C., López-Marcos, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Population balance models represent an accurate and general way of describing the complicated dynamics of cell growth. In this paper we study the numerical integration of a model for the evolution of a size-structured cell population with asymmetric division. We present and analyze a novel and efficient second-order numerical method based on the integration along the characteristic curves. We prove the optimal rate of convergence of the scheme and we ratify it by numerical simulation. Finally, we show that the numerical scheme serves as a valuable tool in order to approximate the stable size distribution of the model.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2016.03.008