Effect of Fluorine Substitution on the Charge Carrier Dynamics of Benzothiadiazole-Based Solar Cell Materials

The femtosecond transient absorption (TA) characterization of a new benzothiadiazole (BT)‐based donor–acceptor conjugated copolymer, poly[(2,6‐dithieno[3,2‐b:2′,3′‐d]thiophene)‐alt‐(4,7‐di(4‐octyldodecylthiopen‐2‐yl)‐2,1,3‐benzo[c][1,2,5]thiadiazole (PBT), as well as its fluorinated derivatives, PFB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2016-08, Vol.37 (15), p.1242-1248
Hauptverfasser: Kim, In-Sik, Kim, In-Bok, Kim, Dong-Yu, Kwon, Seong-Hoon, Ko, Do-Kyeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The femtosecond transient absorption (TA) characterization of a new benzothiadiazole (BT)‐based donor–acceptor conjugated copolymer, poly[(2,6‐dithieno[3,2‐b:2′,3′‐d]thiophene)‐alt‐(4,7‐di(4‐octyldodecylthiopen‐2‐yl)‐2,1,3‐benzo[c][1,2,5]thiadiazole (PBT), as well as its fluorinated derivatives, PFBT and PDFBT, is carried out. Additionally, bulk heterojunction (BHJ) films consisting of the copolymers and [6,6]‐phenyl‐C71‐butylic acid methyl ester (PC70BM) are examined using TA spectroscopy. Both the singlet excited state dynamics in the copolymers and the charge transfer state dynamics in the BHJs are investigated in terms of fluorination dependency; the fluorinated copolymers exhibit less singlet exciton recombination rate than the fluorine‐free copolymer, and the BHJs including the fluorinated copolymers display slower monomolecular recombination than the fluorine‐free analogue. Furthermore, the excitation‐intensity‐dependent TA dynamics of the copolymers and BHJs is investigated, revealing that, when sufficiently high excitation intensity is used to induce annihilation processes, the fluorinated copolymers and BHJs incorporating the fluorinated copolymers show more rapid TA decay ascribable to morphological enhancement. These TA spectroscopic findings are found to correlate with the device characteristics with respect to fluorinated content in the polymer solar cells. In particular, both the short‐circuit current density and fill factor of BHJ solar cells correspond closely with the fast decay parameters of the BHJ films under high excitation intensity. The charge carrier dynamics of benzothiadiazole‐based conjugated polymer, named PBT, as well as of its fluorinated analogues, PFBT and PDFBT, are investigated by femtosecond transient absorption (TA) spectroscopy. In addition, bulk heterojunctions containing both each copolymer and fullerene derivative are also analyzed using the TA measurement.
ISSN:1022-1336
1521-3927
DOI:10.1002/marc.201600197