Full polysaccharide chitosan-CMC membrane and silver nanocomposite: synthesis, characterization, and antibacterial behaviors

Chitosan‐carboxymethyl cellulose (CMC) full polysaccharide membrane was prepared by cross‐linking of chitosan with CMC dialdehyde and subsequent reductive amination. CMC dialdehyde molecule was prepared by periodate oxidation of CMC and then applied as a cross‐linking agent to form a new membrane ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers for advanced technologies 2016-09, Vol.27 (9), p.1204-1210
Hauptverfasser: Ghasemzadeh, Hossein, Mahboubi, Arash, Karimi, Katayoun, Hassani, Samaneh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chitosan‐carboxymethyl cellulose (CMC) full polysaccharide membrane was prepared by cross‐linking of chitosan with CMC dialdehyde and subsequent reductive amination. CMC dialdehyde molecule was prepared by periodate oxidation of CMC and then applied as a cross‐linking agent to form a new membrane network. The properties of oxidized CMC were investigated by various methods such as Fourier transform infrared (FT‐IR) spectroscopy, 1H NMR spectroscopy, and viscosity test. Then, novel chitosan‐CMC silver nanocomposite was prepared using chitosan‐CMC as a carrier. The structure of the chitosan‐CMC membrane and the silver nanocomposite were confirmed by FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). TEM images indicate that the chitosan‐CMC nanocomposite comprises silver nanoparticles with diameters in the range of about 5–20 nm. The antibacterial studies of the nanocomposite were also evaluated. The chitosan‐CMC silver nanocomposite demonstrates good antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Copyright © 2016 John Wiley & Sons, Ltd.
ISSN:1042-7147
1099-1581
DOI:10.1002/pat.3785