First- and second-order error estimates in Monte Carlo integration

In Monte Carlo integration an accurate and reliable determination of the numerical integration error is essential. We point out the need for an independent estimate of the error on this error, for which we present an unbiased estimator. In contrast to the usual (first-order) error estimator, this se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2016-11, Vol.208, p.29-34
Hauptverfasser: Bakx, R., Kleiss, R.H.P., Versteegen, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Monte Carlo integration an accurate and reliable determination of the numerical integration error is essential. We point out the need for an independent estimate of the error on this error, for which we present an unbiased estimator. In contrast to the usual (first-order) error estimator, this second-order estimator can be shown to be not necessarily positive in an actual Monte Carlo computation. We propose an alternative and indicate how this can be computed in linear time without risk of large rounding errors. In addition, we comment on the relatively very slow convergence of the second-order error estimate.
ISSN:0010-4655
1879-2944
DOI:10.1016/j.cpc.2016.07.021