A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils
A simple and novel photoelectrochemical (PEC) aptasensor for selective detection of bisphenol A (BPA) was developed using surface plasmon resonance of Au nanoparticles activated ZnO nanopencils. With the irradiation of simulated light, the increased photocurrent of nano-Au/ZnO than that of pure ZnO...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2016-12, Vol.86, p.315-320 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple and novel photoelectrochemical (PEC) aptasensor for selective detection of bisphenol A (BPA) was developed using surface plasmon resonance of Au nanoparticles activated ZnO nanopencils. With the irradiation of simulated light, the increased photocurrent of nano-Au/ZnO than that of pure ZnO nanopencil is induced by the hot electrons from excited Au nanoparticles. The perfect selectivity is attributed to the specific binding of BPA to its aptamer. With the addition of BPA, the conformation of aptamer changed to a G-quadruplex structure, which resulted in the blockages of photogenerated electron-transfer channels. Based on the above mechanisms and the optimized conditions, the assembled PEC aptasensor was linear with the concentration of BPA in the range of 1–1000nmolL−1 with a detection limit of 0.5nmolL−1. The presence of the same concentration and similar structure of other organics did not interfere in the detection of BPA and the recovery was between 96.2% and 108.4%. It has been successfully applied to the detection of BPA in drinking water and liquid milk samples. This PEC aptasensor has good performances in novelty, selectivity, sensitivity and low cost, and it provides an alternative approach to the detection of BPA.
•A novel and label-free photoelectrochemical aptasensor for bisphenol A.•Enhanced photocurrent responses were triggered by the hot electrons from SPR of nano-golds.•Aptamer G-quadruplex structures accordingly blocked photogenerated electron transfer.•The PEC aptasensor exhibited good performances for bisphenol A detection. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2016.06.062 |