Preparation of borate-modified expandable graphite and its flame retardancy on acrylonitrile-butadiene-styrene resin

A borate‐modified expandable graphite (written as MEG) was prepared through one step intercalating reaction of natural graphite, using KMnO4 as oxidant, H2SO4 and sodium tetraborate as intercalator and assistant intercalator, respectively. The dilatability, structure, element contents, thermal stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2016-09, Vol.37 (9), p.2673-2683
Hauptverfasser: Pang, Xiuyan, Shi, Xiuzhu, Kang, Xiaoou, Duan, Mingwei, Weng, Mengqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A borate‐modified expandable graphite (written as MEG) was prepared through one step intercalating reaction of natural graphite, using KMnO4 as oxidant, H2SO4 and sodium tetraborate as intercalator and assistant intercalator, respectively. The dilatability, structure, element contents, thermal stability, and flame retardancy on acrylonitrile‐butadiene‐styrene (ABS) were investigated. Compared with the normal expandable graphite (written as EG, which was prepared with only H2SO4 as intercalator), the results show that MEG exhibits higher expandable property, thermal stability and flame retardancy on ABS. The EDS, FT‐IR, and XRD results reveal that borate has been inserted into graphite layers. With the addition of MEG or EG at a 30 wt%, LOI of 70ABS/30MEG composite improved to 27.9%, 2.2% higher than that of 70ABS/30EG. Moreover, the synergistic effect between MEG and traditional intumescent flame retardant (IFR, consists of ammonium polyphosphate (APP), pentaerythritol (PER), and melamine (MEL) with a mass ratio of 7.5:4.5:3.0) improves the LOI of 70ABS/15MEG/15IFR composite to 32.6%, and the UL‐94 level reaches V‐0. This synergistic efficiency is attributed to the formation of continuous and compact residual char. Addition of MEG together with IFR changes the ABS pyrolysis behavior, and there is not only physical synergy, but also chemical reaction. POLYM. COMPOS., 37:2673–2683, 2016. © 2015 Society of Plastics Engineers
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.23461