Locating Pairs of Vertices on a Hamiltonian Cycle in Bigraphs
Let G be a simple m × m bipartite graph with minimum degree δ ( G ) ≥ m / 2 + 1 . We prove that for every pair of vertices x , y , there is a Hamiltonian cycle in G such that the distance between x and y along that cycle equals k , where 2 ≤ k < m / 6 is an integer having appropriate parity. We...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2016-05, Vol.32 (3), p.963-986 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a simple
m
×
m
bipartite graph with minimum degree
δ
(
G
)
≥
m
/
2
+
1
. We prove that for every pair of vertices
x
,
y
, there is a Hamiltonian cycle in
G
such that the distance between
x
and
y
along that cycle equals
k
, where
2
≤
k
<
m
/
6
is an integer having appropriate parity. We conjecture that this is also true up to
k
≤
m
. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-015-1626-2 |