Locating Pairs of Vertices on a Hamiltonian Cycle in Bigraphs

Let G be a simple m × m bipartite graph with minimum degree δ ( G ) ≥ m / 2 + 1 . We prove that for every pair of vertices x ,  y , there is a Hamiltonian cycle in G such that the distance between x and y along that cycle equals k , where 2 ≤ k < m / 6 is an integer having appropriate parity. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2016-05, Vol.32 (3), p.963-986
Hauptverfasser: Faudree, Ralph J., Lehel, Jeno, Yoshimoto, Kiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a simple m × m bipartite graph with minimum degree δ ( G ) ≥ m / 2 + 1 . We prove that for every pair of vertices x ,  y , there is a Hamiltonian cycle in G such that the distance between x and y along that cycle equals k , where 2 ≤ k < m / 6 is an integer having appropriate parity. We conjecture that this is also true up to k ≤ m .
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-015-1626-2