Decyloxyphenyl-substituted Quinoxaline-embedded Conjugated Electrochromic Polymers with High Switching Stability and Fast Response Speed

Two novel decyloxyphenylquinoxaline-based donor-acceptor (D-A) electroactive monomers bearing dialkoxythiophene as the donor unit are synthesized using Stille coupling reaction. The corresponding polymers, poly[2,3- bis(4-decyloxyphenyl)-5,8-bis(3,4-dimethoxylthiophen-2-yl)quinoxaline] (P1) and poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of polymer science 2016-04, Vol.34 (4), p.407-419
Hauptverfasser: Xu, Zhen, Kong, Ling-qian, Zhao, Jin-sheng, Fan, Wei-yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two novel decyloxyphenylquinoxaline-based donor-acceptor (D-A) electroactive monomers bearing dialkoxythiophene as the donor unit are synthesized using Stille coupling reaction. The corresponding polymers, poly[2,3- bis(4-decyloxyphenyl)-5,8-bis(3,4-dimethoxylthiophen-2-yl)quinoxaline] (P1) and poly[2,3-bis(4-decyloxyphenyl)-5,8- bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)quinoxaline] (P2), are directly deposited onto the working electrode surface by electropolymerization. All materials were characterized by nuclear magnetic resonance (NMR), mass spectrometry (MS), scanning electron microscopy (SEM), cyclic voltammetry (CV), ultraviolet-visible absorption spectrometry (UV-Vis) and spectro-electrochemical measurements. Electrochemical studies demonstrate that both polymers are capable of showing both reasonable n- and p-doping processes, and advanced long-term switching stabilities. 3,4-Ethylenedioxythiophene substituted for 3,4-dimethoxythiophene as a donor unit, which enhances the conjugated double-bond character of the conducting polymer, thus leading to a lower electronic band-gap. Likewise, the neutral state color of the synthesized polymer tuned from blue to blue-green corresponding to the red shift of the maximum absorption wavelengths in the visible region. In addition, kinetics study of P1 revealed 42% (595 nm), 30% (839 nm) and 69% (1500 nm) transmittance changes (A7%), while P2 exhibited 32% (740 nm), 71% (2000 nm) at the dominant wavelengths. It was also observed that both films could switch quickly between the neutral state and oxidation state, with the response time less than 1 s both in visible and near infrared regions.
ISSN:0256-7679
1439-6203
DOI:10.1007/s10118-016-1759-7