Heat transfer enhancement through PCM thermal storage by use of copper fins

Enhancement of heat transfer over a cylinder shaped thermal energy storage filled by paraffin E53 by use of radial rectangular copper fins was analyzed. The thermo-physical features of the storage material are determined in separate experiments and implemented to Fluent software over UDF. Advanced t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2016, Vol.20 (suppl. 1), p.251-259
Hauptverfasser: Rudonja, Nedzad, Komatina, Mirko, Zivkovic, Goran, Antonijevic, Dragi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enhancement of heat transfer over a cylinder shaped thermal energy storage filled by paraffin E53 by use of radial rectangular copper fins was analyzed. The thermo-physical features of the storage material are determined in separate experiments and implemented to Fluent software over UDF. Advanced thermal storage geometry comprehension and optimization required introduction of a parameter suitable for the analysis of heat transfer enhancement, so the ratio of heat transfer surfaces as a factor was proposed and applied. It is revealed that increase of the ratio of heat transfer surfaces leads to the decrease of melting time and vice versa. Numerical analysis, employing the 3D model built in Ansys software, observed storage reservoir geometries with variable number of longitudinal radial fins. The adjusted set of boundary conditions was carried out and both written in C language and implemented over UDF in order to define variable heat flux along the height of the heater. The comparison of acquired numerical and experimental results showed a strong correlation. Experimental validation of numerical results was done on the real TES apparatus.
ISSN:0354-9836
2334-7163
DOI:10.2298/TSCI150729136R