Iterative reproducing kernel Hilbert spaces method for Riccati differential equations

This paper presents iterative reproducing kernel Hilbert spaces method (IRKHSM) to obtain the numerical solutions for Riccati differential equations with constant and variable coefficients. Representation of the exact solution is given in the W22[0,X] reproducing kernel space. Numerical solution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2017-01, Vol.309, p.163-174
1. Verfasser: Sakar, Mehmet Giyas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents iterative reproducing kernel Hilbert spaces method (IRKHSM) to obtain the numerical solutions for Riccati differential equations with constant and variable coefficients. Representation of the exact solution is given in the W22[0,X] reproducing kernel space. Numerical solution of Riccati differential equations is acquired by interrupting the n-term of the exact solution. Also, the error of the numerical solution is monotone decreasing in terms of the norm of W22[0,X]. The outcomes from numerical examples show that the present iterative algorithm is very effective and convenient.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2016.06.029