Space-Time Adaptive Processing With Vertical Frequency Diverse Array for Range-Ambiguous Clutter Suppression
A high-pulse-repetition-frequency (PRF) radar can handle the high Doppler frequencies of clutter echoes received by a fast-moving airborne radar. However, high-PRF radar causes range ambiguity. In addition, the clutter is range dependent when the airborne radar works in a forward-looking geometry. T...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2016-09, Vol.54 (9), p.5352-5364 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A high-pulse-repetition-frequency (PRF) radar can handle the high Doppler frequencies of clutter echoes received by a fast-moving airborne radar. However, high-PRF radar causes range ambiguity. In addition, the clutter is range dependent when the airborne radar works in a forward-looking geometry. The range ambiguity and range dependence will lead to severe performance degradation of the traditional space-time adaptive processing (STAP) methods. In this paper, a vertical frequency diverse array (FDA), which applies frequency diversity in the vertical of a planar array, is explored to circumvent the range ambiguity problem in STAP radar. A range-ambiguous clutter suppression approach is devised, which consists of vertical spatial frequency compensation and pre-STAP filtering. In the vertical-FDA radar, the vertical spatial frequency depends not only on the depression angle but also on the slant range. By using this characteristic, the range-ambiguous clutter can be separated in the vertical spatial frequency domain, and then, clutter suppression is achieved for each separated range region. As a result, both problems of range ambiguity and range dependence are solved. Simulation results are provided to demonstrate the effectiveness of the proposed method. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2016.2561308 |