Learning combination of anomaly detectors for security domain

This paper presents a novel technique of finding a convex combination of outputs of anomaly detectors maximizing the accuracy in τ-quantile of most anomalous samples. Such an approach better reflects the needs in the security domain in which subsequent analysis of alarms is costly and can be done on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2016-10, Vol.107, p.55-63
Hauptverfasser: Grill, Martin, Pevný, Tomáš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel technique of finding a convex combination of outputs of anomaly detectors maximizing the accuracy in τ-quantile of most anomalous samples. Such an approach better reflects the needs in the security domain in which subsequent analysis of alarms is costly and can be done only on a small number of alarms. An extensive experimental evaluation and comparison to prior art on real network data using sets of anomaly detectors of two existing intrusion detection systems shows that the proposed method not only outperforms prior art, it is also more robust to noise in training data labels, which is another important feature for deployment in practice.
ISSN:1389-1286
1872-7069
DOI:10.1016/j.comnet.2016.05.021