Explicit Density Approximations for Local Volatility Models Using Heat Kernel Expansions

Heat kernel perturbation theory is a tool for constructing explicit approximation formulas for the solutions of linear parabolic equations. We review the crux of this perturbative formalism and then apply it to differential equations which govern the transition densities of several local volatility...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability 2016-09, Vol.18 (3), p.847-867
Hauptverfasser: Taylor, Stephen, Glasgow, Scott, Taylor, James, Vecer, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat kernel perturbation theory is a tool for constructing explicit approximation formulas for the solutions of linear parabolic equations. We review the crux of this perturbative formalism and then apply it to differential equations which govern the transition densities of several local volatility processes. In particular, we compute all the heat kernel coefficients for the CEV and quadratic local volatility models; in the later case, we are able to use these to construct an exact explicit formula for the processes’ transition density. We then derive low order approximation formulas for the cubic local volatility model, an affine-affine short rate model, and a generalized mean reverting CEV model. We finally demonstrate that the approximation formulas are accurate in certain model parameter regimes via comparison to Monte Carlo simulations.
ISSN:1387-5841
1573-7713
DOI:10.1007/s11009-015-9463-6