In situ stress magnitude and rock strength in the Nankai accretionary complex: a novel approach using paired constraints from downhole data in two wells

We present a method to simultaneously constrain both far-field horizontal stress magnitudes ( S hmin and S Hmax ) and in situ rock unconfined compressive strength (UCS), using geophysical logging data from two boreholes located 70 m apart that access the uppermost accretionary prism of the Nankai su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth, planets, and space planets, and space, 2016-07, Vol.68 (1), p.1-9, Article 123
Hauptverfasser: Huffman, K. A., Saffer, D. M., Dugan, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method to simultaneously constrain both far-field horizontal stress magnitudes ( S hmin and S Hmax ) and in situ rock unconfined compressive strength (UCS), using geophysical logging data from two boreholes located 70 m apart that access the uppermost accretionary prism of the Nankai subduction zone . The boreholes sample the same sediments and are affected by the same tectonic stress field, but were drilled with different annular pressures, thus providing a unique opportunity to refine estimates of both in situ stress magnitudes and rock strength. We develop a forward model to predict the angular width of compressional wellbore failures (borehole breakouts), and identify combinations of S Hmax and UCS that best match breakout widths observed in resistivity images from the two boreholes. The method requires knowledge of S hmin , which is defined by leak-off tests conducted during drilling. Our results define a normal to strike-slip stress regime from 900 to 1386 m below seafloor, consistent with observations from seismic and core data. Our analysis also suggests that in situ values of UCS are generally slightly lower that commonly assumed on the basis of published empirical relations between UCS and P-wave velocity.
ISSN:1880-5981
1880-5981
DOI:10.1186/s40623-016-0491-4