Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer
Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance r...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2016, Vol.9 (8), p.598-598 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 598 |
---|---|
container_issue | 8 |
container_start_page | 598 |
container_title | Energies (Basel) |
container_volume | 9 |
creator | Chang, Xiaodong Huang, Jinquan Lu, Feng Sun, Haobo |
description | Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance robustness, this paper describes a new GPHM architecture using a sliding mode observer (SMO). The convergence of the error system in uncertainty-existing circumstances is demonstrated, and the proposed method is developed to estimate components' performance degradations regardless of modeling uncertainties. Simulations using a nonlinear model of a turbofan engine are presented, in which health monitoring problems are handled by the KF and the SMO, respectively. Results indicate the proposed approach possesses better diagnostic performance compared to the KF-based scheme, and the SMO shows its strong robustness and great potential to be applied to GPHM. |
doi_str_mv | 10.3390/en9080598 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835561745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835561745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-4893c78704c32160668993244c2bea7a00600ced62230747047da13b977ac7983</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWGoP_oOAFz2sJpndfBxrqa1QqfhxXtJstqZsszXZFfz3plREPDmXd2AeZnjnReickmsARW6sV0SSQskjNKBK8YwSAce_-lM0inFDUgFQABigp5mO2aPu3vDc6ibJNHZuqzvXely3AWuPxy6YoOsOT_3aeYtvdbQVTnONnxtXOb_GD21l8XIVbfiw4Qyd1LqJdvStQ_R6N32ZzLPFcnY_GS8ykzPZZblUYIQUJDfAKCecS6WA5blhK6uFJoQTYmzFGQMi8sSJSlNYKSG0EUrCEF0e9u5C-97b2JVbF41tGu1t28eSSigKTkVe_AOlBVfpHk_oxR900_bBJyN7CqiSlLJEXR0oE9oYg63LXUhvC58lJeU-i_InC_gCn5h27g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813198112</pqid></control><display><type>article</type><title>Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chang, Xiaodong ; Huang, Jinquan ; Lu, Feng ; Sun, Haobo</creator><creatorcontrib>Chang, Xiaodong ; Huang, Jinquan ; Lu, Feng ; Sun, Haobo</creatorcontrib><description>Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance robustness, this paper describes a new GPHM architecture using a sliding mode observer (SMO). The convergence of the error system in uncertainty-existing circumstances is demonstrated, and the proposed method is developed to estimate components' performance degradations regardless of modeling uncertainties. Simulations using a nonlinear model of a turbofan engine are presented, in which health monitoring problems are handled by the KF and the SMO, respectively. Results indicate the proposed approach possesses better diagnostic performance compared to the KF-based scheme, and the SMO shows its strong robustness and great potential to be applied to GPHM.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en9080598</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Aerospace engines ; Aircraft ; Aircraft engines ; Airplane engines ; Computer simulation ; Diagnostic systems ; Gas turbine engines ; Mathematical models ; Monitoring systems ; Robustness ; Sensors ; Sliding mode ; Uncertainty</subject><ispartof>Energies (Basel), 2016, Vol.9 (8), p.598-598</ispartof><rights>Copyright MDPI AG 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-4893c78704c32160668993244c2bea7a00600ced62230747047da13b977ac7983</citedby><cites>FETCH-LOGICAL-c428t-4893c78704c32160668993244c2bea7a00600ced62230747047da13b977ac7983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Xiaodong</creatorcontrib><creatorcontrib>Huang, Jinquan</creatorcontrib><creatorcontrib>Lu, Feng</creatorcontrib><creatorcontrib>Sun, Haobo</creatorcontrib><title>Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer</title><title>Energies (Basel)</title><description>Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance robustness, this paper describes a new GPHM architecture using a sliding mode observer (SMO). The convergence of the error system in uncertainty-existing circumstances is demonstrated, and the proposed method is developed to estimate components' performance degradations regardless of modeling uncertainties. Simulations using a nonlinear model of a turbofan engine are presented, in which health monitoring problems are handled by the KF and the SMO, respectively. Results indicate the proposed approach possesses better diagnostic performance compared to the KF-based scheme, and the SMO shows its strong robustness and great potential to be applied to GPHM.</description><subject>Accuracy</subject><subject>Aerospace engines</subject><subject>Aircraft</subject><subject>Aircraft engines</subject><subject>Airplane engines</subject><subject>Computer simulation</subject><subject>Diagnostic systems</subject><subject>Gas turbine engines</subject><subject>Mathematical models</subject><subject>Monitoring systems</subject><subject>Robustness</subject><subject>Sensors</subject><subject>Sliding mode</subject><subject>Uncertainty</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU1LAzEQhoMoWGoP_oOAFz2sJpndfBxrqa1QqfhxXtJstqZsszXZFfz3plREPDmXd2AeZnjnReickmsARW6sV0SSQskjNKBK8YwSAce_-lM0inFDUgFQABigp5mO2aPu3vDc6ibJNHZuqzvXely3AWuPxy6YoOsOT_3aeYtvdbQVTnONnxtXOb_GD21l8XIVbfiw4Qyd1LqJdvStQ_R6N32ZzLPFcnY_GS8ykzPZZblUYIQUJDfAKCecS6WA5blhK6uFJoQTYmzFGQMi8sSJSlNYKSG0EUrCEF0e9u5C-97b2JVbF41tGu1t28eSSigKTkVe_AOlBVfpHk_oxR900_bBJyN7CqiSlLJEXR0oE9oYg63LXUhvC58lJeU-i_InC_gCn5h27g</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Chang, Xiaodong</creator><creator>Huang, Jinquan</creator><creator>Lu, Feng</creator><creator>Sun, Haobo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2016</creationdate><title>Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer</title><author>Chang, Xiaodong ; Huang, Jinquan ; Lu, Feng ; Sun, Haobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-4893c78704c32160668993244c2bea7a00600ced62230747047da13b977ac7983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Aerospace engines</topic><topic>Aircraft</topic><topic>Aircraft engines</topic><topic>Airplane engines</topic><topic>Computer simulation</topic><topic>Diagnostic systems</topic><topic>Gas turbine engines</topic><topic>Mathematical models</topic><topic>Monitoring systems</topic><topic>Robustness</topic><topic>Sensors</topic><topic>Sliding mode</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Xiaodong</creatorcontrib><creatorcontrib>Huang, Jinquan</creatorcontrib><creatorcontrib>Lu, Feng</creatorcontrib><creatorcontrib>Sun, Haobo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Xiaodong</au><au>Huang, Jinquan</au><au>Lu, Feng</au><au>Sun, Haobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer</atitle><jtitle>Energies (Basel)</jtitle><date>2016</date><risdate>2016</risdate><volume>9</volume><issue>8</issue><spage>598</spage><epage>598</epage><pages>598-598</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance robustness, this paper describes a new GPHM architecture using a sliding mode observer (SMO). The convergence of the error system in uncertainty-existing circumstances is demonstrated, and the proposed method is developed to estimate components' performance degradations regardless of modeling uncertainties. Simulations using a nonlinear model of a turbofan engine are presented, in which health monitoring problems are handled by the KF and the SMO, respectively. Results indicate the proposed approach possesses better diagnostic performance compared to the KF-based scheme, and the SMO shows its strong robustness and great potential to be applied to GPHM.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en9080598</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2016, Vol.9 (8), p.598-598 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835561745 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Aerospace engines Aircraft Aircraft engines Airplane engines Computer simulation Diagnostic systems Gas turbine engines Mathematical models Monitoring systems Robustness Sensors Sliding mode Uncertainty |
title | Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas-Path%20Health%20Estimation%20for%20an%20Aircraft%20Engine%20Based%20on%20a%20Sliding%20Mode%20Observer&rft.jtitle=Energies%20(Basel)&rft.au=Chang,%20Xiaodong&rft.date=2016&rft.volume=9&rft.issue=8&rft.spage=598&rft.epage=598&rft.pages=598-598&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en9080598&rft_dat=%3Cproquest_cross%3E1835561745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813198112&rft_id=info:pmid/&rfr_iscdi=true |