Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer

Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2016, Vol.9 (8), p.598-598
Hauptverfasser: Chang, Xiaodong, Huang, Jinquan, Lu, Feng, Sun, Haobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue 8
container_start_page 598
container_title Energies (Basel)
container_volume 9
creator Chang, Xiaodong
Huang, Jinquan
Lu, Feng
Sun, Haobo
description Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance robustness, this paper describes a new GPHM architecture using a sliding mode observer (SMO). The convergence of the error system in uncertainty-existing circumstances is demonstrated, and the proposed method is developed to estimate components' performance degradations regardless of modeling uncertainties. Simulations using a nonlinear model of a turbofan engine are presented, in which health monitoring problems are handled by the KF and the SMO, respectively. Results indicate the proposed approach possesses better diagnostic performance compared to the KF-based scheme, and the SMO shows its strong robustness and great potential to be applied to GPHM.
doi_str_mv 10.3390/en9080598
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835561745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835561745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-4893c78704c32160668993244c2bea7a00600ced62230747047da13b977ac7983</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWGoP_oOAFz2sJpndfBxrqa1QqfhxXtJstqZsszXZFfz3plREPDmXd2AeZnjnReickmsARW6sV0SSQskjNKBK8YwSAce_-lM0inFDUgFQABigp5mO2aPu3vDc6ibJNHZuqzvXely3AWuPxy6YoOsOT_3aeYtvdbQVTnONnxtXOb_GD21l8XIVbfiw4Qyd1LqJdvStQ_R6N32ZzLPFcnY_GS8ykzPZZblUYIQUJDfAKCecS6WA5blhK6uFJoQTYmzFGQMi8sSJSlNYKSG0EUrCEF0e9u5C-97b2JVbF41tGu1t28eSSigKTkVe_AOlBVfpHk_oxR900_bBJyN7CqiSlLJEXR0oE9oYg63LXUhvC58lJeU-i_InC_gCn5h27g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813198112</pqid></control><display><type>article</type><title>Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chang, Xiaodong ; Huang, Jinquan ; Lu, Feng ; Sun, Haobo</creator><creatorcontrib>Chang, Xiaodong ; Huang, Jinquan ; Lu, Feng ; Sun, Haobo</creatorcontrib><description>Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance robustness, this paper describes a new GPHM architecture using a sliding mode observer (SMO). The convergence of the error system in uncertainty-existing circumstances is demonstrated, and the proposed method is developed to estimate components' performance degradations regardless of modeling uncertainties. Simulations using a nonlinear model of a turbofan engine are presented, in which health monitoring problems are handled by the KF and the SMO, respectively. Results indicate the proposed approach possesses better diagnostic performance compared to the KF-based scheme, and the SMO shows its strong robustness and great potential to be applied to GPHM.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en9080598</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Aerospace engines ; Aircraft ; Aircraft engines ; Airplane engines ; Computer simulation ; Diagnostic systems ; Gas turbine engines ; Mathematical models ; Monitoring systems ; Robustness ; Sensors ; Sliding mode ; Uncertainty</subject><ispartof>Energies (Basel), 2016, Vol.9 (8), p.598-598</ispartof><rights>Copyright MDPI AG 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-4893c78704c32160668993244c2bea7a00600ced62230747047da13b977ac7983</citedby><cites>FETCH-LOGICAL-c428t-4893c78704c32160668993244c2bea7a00600ced62230747047da13b977ac7983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Xiaodong</creatorcontrib><creatorcontrib>Huang, Jinquan</creatorcontrib><creatorcontrib>Lu, Feng</creatorcontrib><creatorcontrib>Sun, Haobo</creatorcontrib><title>Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer</title><title>Energies (Basel)</title><description>Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance robustness, this paper describes a new GPHM architecture using a sliding mode observer (SMO). The convergence of the error system in uncertainty-existing circumstances is demonstrated, and the proposed method is developed to estimate components' performance degradations regardless of modeling uncertainties. Simulations using a nonlinear model of a turbofan engine are presented, in which health monitoring problems are handled by the KF and the SMO, respectively. Results indicate the proposed approach possesses better diagnostic performance compared to the KF-based scheme, and the SMO shows its strong robustness and great potential to be applied to GPHM.</description><subject>Accuracy</subject><subject>Aerospace engines</subject><subject>Aircraft</subject><subject>Aircraft engines</subject><subject>Airplane engines</subject><subject>Computer simulation</subject><subject>Diagnostic systems</subject><subject>Gas turbine engines</subject><subject>Mathematical models</subject><subject>Monitoring systems</subject><subject>Robustness</subject><subject>Sensors</subject><subject>Sliding mode</subject><subject>Uncertainty</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU1LAzEQhoMoWGoP_oOAFz2sJpndfBxrqa1QqfhxXtJstqZsszXZFfz3plREPDmXd2AeZnjnReickmsARW6sV0SSQskjNKBK8YwSAce_-lM0inFDUgFQABigp5mO2aPu3vDc6ibJNHZuqzvXely3AWuPxy6YoOsOT_3aeYtvdbQVTnONnxtXOb_GD21l8XIVbfiw4Qyd1LqJdvStQ_R6N32ZzLPFcnY_GS8ykzPZZblUYIQUJDfAKCecS6WA5blhK6uFJoQTYmzFGQMi8sSJSlNYKSG0EUrCEF0e9u5C-97b2JVbF41tGu1t28eSSigKTkVe_AOlBVfpHk_oxR900_bBJyN7CqiSlLJEXR0oE9oYg63LXUhvC58lJeU-i_InC_gCn5h27g</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Chang, Xiaodong</creator><creator>Huang, Jinquan</creator><creator>Lu, Feng</creator><creator>Sun, Haobo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2016</creationdate><title>Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer</title><author>Chang, Xiaodong ; Huang, Jinquan ; Lu, Feng ; Sun, Haobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-4893c78704c32160668993244c2bea7a00600ced62230747047da13b977ac7983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Aerospace engines</topic><topic>Aircraft</topic><topic>Aircraft engines</topic><topic>Airplane engines</topic><topic>Computer simulation</topic><topic>Diagnostic systems</topic><topic>Gas turbine engines</topic><topic>Mathematical models</topic><topic>Monitoring systems</topic><topic>Robustness</topic><topic>Sensors</topic><topic>Sliding mode</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Xiaodong</creatorcontrib><creatorcontrib>Huang, Jinquan</creatorcontrib><creatorcontrib>Lu, Feng</creatorcontrib><creatorcontrib>Sun, Haobo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Xiaodong</au><au>Huang, Jinquan</au><au>Lu, Feng</au><au>Sun, Haobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer</atitle><jtitle>Energies (Basel)</jtitle><date>2016</date><risdate>2016</risdate><volume>9</volume><issue>8</issue><spage>598</spage><epage>598</epage><pages>598-598</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance robustness, this paper describes a new GPHM architecture using a sliding mode observer (SMO). The convergence of the error system in uncertainty-existing circumstances is demonstrated, and the proposed method is developed to estimate components' performance degradations regardless of modeling uncertainties. Simulations using a nonlinear model of a turbofan engine are presented, in which health monitoring problems are handled by the KF and the SMO, respectively. Results indicate the proposed approach possesses better diagnostic performance compared to the KF-based scheme, and the SMO shows its strong robustness and great potential to be applied to GPHM.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en9080598</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2016, Vol.9 (8), p.598-598
issn 1996-1073
1996-1073
language eng
recordid cdi_proquest_miscellaneous_1835561745
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Aerospace engines
Aircraft
Aircraft engines
Airplane engines
Computer simulation
Diagnostic systems
Gas turbine engines
Mathematical models
Monitoring systems
Robustness
Sensors
Sliding mode
Uncertainty
title Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas-Path%20Health%20Estimation%20for%20an%20Aircraft%20Engine%20Based%20on%20a%20Sliding%20Mode%20Observer&rft.jtitle=Energies%20(Basel)&rft.au=Chang,%20Xiaodong&rft.date=2016&rft.volume=9&rft.issue=8&rft.spage=598&rft.epage=598&rft.pages=598-598&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en9080598&rft_dat=%3Cproquest_cross%3E1835561745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813198112&rft_id=info:pmid/&rfr_iscdi=true