Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer
Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance r...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2016, Vol.9 (8), p.598-598 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance robustness, this paper describes a new GPHM architecture using a sliding mode observer (SMO). The convergence of the error system in uncertainty-existing circumstances is demonstrated, and the proposed method is developed to estimate components' performance degradations regardless of modeling uncertainties. Simulations using a nonlinear model of a turbofan engine are presented, in which health monitoring problems are handled by the KF and the SMO, respectively. Results indicate the proposed approach possesses better diagnostic performance compared to the KF-based scheme, and the SMO shows its strong robustness and great potential to be applied to GPHM. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en9080598 |