Optimal Human-Machine Teaming for a Sequential Inspection Operation
A novel mixed initiative optimal control system for intelligence, surveillance and reconnaissance (ISR) operations which entails human-machine teaming has been developed. The scenario entails a camera-equipped unmanned air vehicle sequentially overflying geolocated objects of interest, which need to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on human-machine systems 2016-08, Vol.46 (4), p.557-568 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel mixed initiative optimal control system for intelligence, surveillance and reconnaissance (ISR) operations which entails human-machine teaming has been developed. The scenario entails a camera-equipped unmanned air vehicle sequentially overflying geolocated objects of interest, which need to be classified as either a true or false target by a human operator. The vehicle is allowed a prespecified number of revisits, such that an object can be looked at, a second time, under better viewing conditions. The overarching goal is to correctly classify the objects and minimize the false alarm (FA) and missed detection (MD) rates. We design a stochastic controller that computes if and when a revisit is necessary and also the optimal revisit state, i.e., viewing altitude and aspect angle. The concept of operation is such that the critical task of detection/pattern recognition is relegated to the human operator, whereas optimal decision making is entrusted to the machine. The stochastic dynamic programming-based decision algorithm is, however, informed about the performance of the human operator via an empirical human perception model. The model is experimentally obtained in the form of state-dependent confusion matrices. The optimal closed-loop ISR system is shown to experimentally achieve a FA rate of 5% and MD rate of 12%, which are significantly lower than the open-loop operator-only performance metrics. The performance improvements that were observed are relevant to a particular operator, and thus, the study suggests that the same improvements could conceivably be achieved with other test subjects. |
---|---|
ISSN: | 2168-2291 2168-2305 |
DOI: | 10.1109/THMS.2016.2519603 |