Saddle-Shaped Cyclic Indole Tetramers: 3D Electroactive Molecules

We present a joint theoretical and experimental study of a series of cyclic indole tetramers aimed at understanding the fundamental electronic properties of this 3D platform and evaluating its potential in the construction of new semiconductors. To this end, we combined absorption and Raman spectros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2016-07, Vol.22 (30), p.10651-10660
Hauptverfasser: Ruiz, Constanza, Monge, Ángeles, Gutiérrez-Puebla, Enrique, Alkorta, Ibon, Elguero, José, Navarrete, Juan T. López, Ruiz Delgado, M. Carmen, Gómez-Lor, Berta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a joint theoretical and experimental study of a series of cyclic indole tetramers aimed at understanding the fundamental electronic properties of this 3D platform and evaluating its potential in the construction of new semiconductors. To this end, we combined absorption and Raman spectroscopy, cyclic voltammetry, and spectroelectrochemistry with DFT calculations. Our results suggest that this platform can be easily and reversibly oxidized. Additionally, it has a HOMO that matches very well with the workfunction of gold, therefore charge injection from a gold electrode is expected to occur without significant barriers. Interestingly, the cyclic tetraindoles allow for good electron delocalization in spite of their saddle‐shaped structures. The steric constraints introduced by N‐substitution significantly inhibits ring inversion of the central cyclooctatetraene unit, whereas it only barely affects the optical and electrochemical properties (a slightly higher oxidation potential and a blueshifted absorption upon alkylation are observed). Cyclic tetraindoles that allow for efficient electronic communication among their branches represent interesting 3D electroactive scaffolds with potential applications in organic electronics (see figure).
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201600932