A novel curvature-controllable steerable needle for percutaneous intervention
Over the last few decades, flexible steerable robotic needles for percutaneous intervention have been the subject of significant interest. However, there still remain issues related to (a) steering the needle’s direction with less damage to surrounding tissues and (b) increasing the needle’s maximum...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2016-08, Vol.230 (8), p.727-738 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the last few decades, flexible steerable robotic needles for percutaneous intervention have been the subject of significant interest. However, there still remain issues related to (a) steering the needle’s direction with less damage to surrounding tissues and (b) increasing the needle’s maximum curvature for better controllability. One widely used approach is to control the fixed-angled bevel-tip needle using a “duty-cycle” algorithm. While this algorithm has shown its applicability, it can potentially damage surrounding tissue, which has prevented the widespread adoption of this technology. This situation has motivated the development of a new steerable flexible needle that can change its curvature without axial rotation, while at the same time producing a larger curvature. In this article, we propose a novel curvature-controllable steerable needle. The proposed robotic needle consists of two parts: a cannula and a stylet with a bevel-tip. The curvature of the needle’s path is controlled by a control offset, defined by the offset between the bevel-tip and the cannula. As a result, the necessity of rotating the whole needle’s body is decreased. The duty-cycle algorithm is utilized to a limited degree to obtain a larger radius of curvature, which is similar to a straight path. The first prototype of 0.46 mm (outer diameter) was fabricated and tested with both in vitro gelatin phantom and ex vivo cow liver tissue. The maximum curvatures measured 0.008 mm−1 in 6 wt% gelatin phantom, 0.0139 mm−1 in 10 wt% gelatin phantom, and 0.0038 mm−1 in cow liver. The experimental results show a linear relationship between the curvature and the control offset, which can be utilized for future implementation of this control algorithm. |
---|---|
ISSN: | 0954-4119 2041-3033 |
DOI: | 10.1177/0954411916648988 |