New Solid-Base Cu–MgO for CO2 Capture at 473 K and Removal of Nitrosamine
To fabricate a new solid base with high efficiency in the adsorption of CO2 at 473 K and catalytic activity in the degradation of nitrosamines, magnesium oxalate and copper nitrate are mixed with the assistance of microwave irradiation followed by calcination to immobilize CuO among MgO particles. T...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-11, Vol.8 (44), p.30193-30204 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To fabricate a new solid base with high efficiency in the adsorption of CO2 at 473 K and catalytic activity in the degradation of nitrosamines, magnesium oxalate and copper nitrate are mixed with the assistance of microwave irradiation followed by calcination to immobilize CuO among MgO particles. The binary solid base CuO–MgO is thus moderately reduced to form the Cu-inserted MgO composite with highly exposed strong basic sites, and it can capture 34.6 mg g–1 of CO2 in the harsh instantaneous adsorption at 473 K and keep a high strong basicity while trapping the CO2 mixed with SO2 and NO. Besides this, the new solid base exhibits high activity in the removal of volatile nitrosamine N-nitrosopyrrolidine (NPYR), for the first time expanding the application of solid bases to environmental catalysis. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.6b09927 |