Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors

Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed electronics due to their advantageous electrical and mechanical properties, intrinsic printability in solution, and desirable stability in air. However, fully printed, large-area, high-performance, and flexible carbon n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2016-11, Vol.10 (11), p.9816-9822
Hauptverfasser: Cao, Xuan, Lau, Christian, Liu, Yihang, Wu, Fanqi, Gui, Hui, Liu, Qingzhou, Ma, Yuqiang, Wan, Haochuan, Amer, Moh. R, Zhou, Chongwu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed electronics due to their advantageous electrical and mechanical properties, intrinsic printability in solution, and desirable stability in air. However, fully printed, large-area, high-performance, and flexible carbon nanotube active-matrix backplanes are still difficult to realize for future displays and sensing applications. Here, we report fully screen-printed active-matrix electrochromic displays employing carbon nanotube thin-film transistors. Our fully printed backplane shows high electrical performance with mobility of 3.92 ± 1.08 cm2 V–1 s–1, on–off current ratio I on/I off ∼ 104, and good uniformity. The printed backplane was then monolithically integrated with an array of printed electrochromic pixels, resulting in an entirely screen-printed active-matrix electrochromic display (AMECD) with good switching characteristics, facile manufacturing, and long-term stability. Overall, our fully screen-printed AMECD is promising for the mass production of large-area and low-cost flexible displays for applications such as disposable tags, medical electronics, and smart home appliances.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.6b05368