Landiolol hydrochloride ameliorates acute lung injury in a rat model of early sepsis through the suppression of elevated levels of pulmonary endothelin-1
Among the dysfunctions and pathologies associated with sepsis, the underlying molecular mechanisms of sepsis-induced acute lung injury (ALI) are poorly understood. Endothelin (ET)-1, a potent vasoconstrictor and pro-inflammatory peptide, is known to be involved in the pathogenesis of ALI in a rat mo...
Gespeichert in:
Veröffentlicht in: | Life sciences (1973) 2016-12, Vol.166, p.27-33 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Among the dysfunctions and pathologies associated with sepsis, the underlying molecular mechanisms of sepsis-induced acute lung injury (ALI) are poorly understood. Endothelin (ET)-1, a potent vasoconstrictor and pro-inflammatory peptide, is known to be involved in the pathogenesis of ALI in a rat model of sepsis. Here, we investigated whether landiolol hydrochloride, an ultra-short-acting β-blocker, plays a crucial role in ameliorating and attenuating LPS-induced ALI through modulation of the ET-1 system. Male Wistar rats at 8weeks of age were administered with either saline or lipopolysaccharide (LPS) for three hours (3h) and some of the LPS-administered rats were continuously treated with landiolol for 3h. ALI was induced by LPS, including levels of both circulatory and pulmonary TNF-α and IL-6 but [PaO2] was significantly decreased. LPS also induced a significant increase in levels of pulmonary ET-1 and ET-A receptor, but levels of ET-B receptor, which has vasodilating effects, were remarkably diminished. Further, LPS administration upregulated the pulmonary expression of HIF-1α. Finally, the treatment of LPS-administered rats with landiolol for 3h ameliorated and prevented ALI, normalized the altered levels of pulmonary ET-1 and ET-A receptors. Landiolol also induced significant down-regulation of ET-B receptor in lung tissues in the early hours (phase) of sepsis. However, Landiolol treatment had no effect on the up-regulated inflammatory mediators (TNF-α, IL-6) in both plasma and lung tissues during sepsis, and expression of pulmonary HIF-1α also remained unchanged after landiolol treatment. Collectively, these data led us to conclude that landiolol may ameliorate sepsis-induced ALI via the pulmonary ET system. |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2016.10.010 |