Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae
[Display omitted] •Natural poly-culture of filamentous algae was grown in agricultural stormwater.•Filamentous algae biomass lipid content was below 2%.•Anaerobic digestion of whole filamentous algae or LEA yielded ∼0.2LCH4pergVS.•Macro- and micronutrients captured from stormwater were released into...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2016-12, Vol.222, p.294-308 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | |
container_start_page | 294 |
container_title | Bioresource technology |
container_volume | 222 |
creator | Bohutskyi, Pavlo Chow, Steven Ketter, Ben Fung Shek, Coral Yacar, Dean Tang, Yuting Zivojnovich, Mark Betenbaugh, Michael J. Bouwer, Edward J. |
description | [Display omitted]
•Natural poly-culture of filamentous algae was grown in agricultural stormwater.•Filamentous algae biomass lipid content was below 2%.•Anaerobic digestion of whole filamentous algae or LEA yielded ∼0.2LCH4pergVS.•Macro- and micronutrients captured from stormwater were released into AD effluent.•AD effluent was successfully used for growth of lipid-accumulating C. sorokiniana.
An integrated system was implemented for water phytoremediation and biofuel production through sequential cultivation of filamentous algae followed by cultivation of lipid-producing microalgae Chlorella sorokiniana. Natural poly-culture of filamentous algae was grown in agricultural stormwater using the Algal Turf Scrubber®, harvested and subjected for lipid extraction and/or methane production using anaerobic digestion (AD). While filamentous algae lipid content was too low for feasible biodiesel production ( |
doi_str_mv | 10.1016/j.biortech.2016.10.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835404101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852416314109</els_id><sourcerecordid>1835404101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-26b2b568bdaefe44c1223e31e8c94019afbdc05d484ca8e2042f2b14031344fb3</originalsourceid><addsrcrecordid>eNqFUctu2zAQJIoWjZP2FwIee6hcvvTwrUWQPoAA7aE9ExS5tGlIoktSBvxb-cKu4jjXnohdzuzuzBByy9maM9582q_7EFMBu1sLrLG5Zly-IivetbISm7Z5TVZs07Cqq4W6Itc57xljkrfiLbkSbSu6TooVefy1O5WYYAQXTAlxotFTs03BzkOZE9A0T9F72p-oD4MZYSpxztQMWwP0EIdTdQH6mCjeNELZmQn_UnSzXSZ-pGZydJpLCsimCWw8Qjo9ETIWkzNYLWPC8eWEIRyCo1uYIGFv2tIx2BSf1r4jb7wZMrx_fm_In6_3v---Vw8_v_24-_JQWcXqUommF33ddL0z4EEpy4WQIDl0dqMY3xjfO8tqpzplTQeCKeFFzxV6JJXyvbwhH85zUcrfGXLRY8gWhgHloQead7JWTGEcCG3OULwx5wReH1IYUZbmTC956b2-5KWXvJY-8pB4-7xj7jGCF9olIAR8PgMAlR4DJJ0t2mgxLjSyaBfD_3b8A_wwsIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835404101</pqid></control><display><type>article</type><title>Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bohutskyi, Pavlo ; Chow, Steven ; Ketter, Ben ; Fung Shek, Coral ; Yacar, Dean ; Tang, Yuting ; Zivojnovich, Mark ; Betenbaugh, Michael J. ; Bouwer, Edward J.</creator><creatorcontrib>Bohutskyi, Pavlo ; Chow, Steven ; Ketter, Ben ; Fung Shek, Coral ; Yacar, Dean ; Tang, Yuting ; Zivojnovich, Mark ; Betenbaugh, Michael J. ; Bouwer, Edward J.</creatorcontrib><description>[Display omitted]
•Natural poly-culture of filamentous algae was grown in agricultural stormwater.•Filamentous algae biomass lipid content was below 2%.•Anaerobic digestion of whole filamentous algae or LEA yielded ∼0.2LCH4pergVS.•Macro- and micronutrients captured from stormwater were released into AD effluent.•AD effluent was successfully used for growth of lipid-accumulating C. sorokiniana.
An integrated system was implemented for water phytoremediation and biofuel production through sequential cultivation of filamentous algae followed by cultivation of lipid-producing microalgae Chlorella sorokiniana. Natural poly-culture of filamentous algae was grown in agricultural stormwater using the Algal Turf Scrubber®, harvested and subjected for lipid extraction and/or methane production using anaerobic digestion (AD). While filamentous algae lipid content was too low for feasible biodiesel production (<2%), both whole biomass and lipid-extracted algal residues (LEA) yielded ∼0.2LmethanepergVS at loading rates up to 5gVS/L-day. Importantly, essential macro-nutrients and trace elements captured from stormwater were released into the AD effluent as soluble nutrients and were successfully tested as fertilizer replacement for cultivation of lipid-accumulating C. sorokiniana in a subsequent stage. Accordingly, filamentous algae poly-culture was exploited for waste nutrient capturing and biofuel feedstock generation. These nutrients were recovered and reused as a concentrated supplement for potentially high-value microalgae.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2016.10.013</identifier><identifier>PMID: 27728832</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Agriculture ; Algal Turf Scrubber ; Anaerobic digestion centrate ; Anaerobiosis ; Biodegradation, Environmental ; Biofuels ; Biogas production ; Biomass ; Bioreactors - microbiology ; Chlorella - growth & development ; Chlorella - metabolism ; Chlorella sorokiniana ; Esters - metabolism ; Fertilizers ; Lipids - biosynthesis ; Lipids - chemistry ; Methane - biosynthesis ; Microalgae - metabolism ; Nitrogen - isolation & purification ; Nitrogen, Phosphorus and trace element recycling ; Phosphorus - isolation & purification ; Seasons ; Solubility ; Volatilization ; Waste Disposal, Fluid ; Water Pollutants, Chemical - isolation & purification</subject><ispartof>Bioresource technology, 2016-12, Vol.222, p.294-308</ispartof><rights>2016</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-26b2b568bdaefe44c1223e31e8c94019afbdc05d484ca8e2042f2b14031344fb3</citedby><cites>FETCH-LOGICAL-c405t-26b2b568bdaefe44c1223e31e8c94019afbdc05d484ca8e2042f2b14031344fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852416314109$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27728832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohutskyi, Pavlo</creatorcontrib><creatorcontrib>Chow, Steven</creatorcontrib><creatorcontrib>Ketter, Ben</creatorcontrib><creatorcontrib>Fung Shek, Coral</creatorcontrib><creatorcontrib>Yacar, Dean</creatorcontrib><creatorcontrib>Tang, Yuting</creatorcontrib><creatorcontrib>Zivojnovich, Mark</creatorcontrib><creatorcontrib>Betenbaugh, Michael J.</creatorcontrib><creatorcontrib>Bouwer, Edward J.</creatorcontrib><title>Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted]
•Natural poly-culture of filamentous algae was grown in agricultural stormwater.•Filamentous algae biomass lipid content was below 2%.•Anaerobic digestion of whole filamentous algae or LEA yielded ∼0.2LCH4pergVS.•Macro- and micronutrients captured from stormwater were released into AD effluent.•AD effluent was successfully used for growth of lipid-accumulating C. sorokiniana.
An integrated system was implemented for water phytoremediation and biofuel production through sequential cultivation of filamentous algae followed by cultivation of lipid-producing microalgae Chlorella sorokiniana. Natural poly-culture of filamentous algae was grown in agricultural stormwater using the Algal Turf Scrubber®, harvested and subjected for lipid extraction and/or methane production using anaerobic digestion (AD). While filamentous algae lipid content was too low for feasible biodiesel production (<2%), both whole biomass and lipid-extracted algal residues (LEA) yielded ∼0.2LmethanepergVS at loading rates up to 5gVS/L-day. Importantly, essential macro-nutrients and trace elements captured from stormwater were released into the AD effluent as soluble nutrients and were successfully tested as fertilizer replacement for cultivation of lipid-accumulating C. sorokiniana in a subsequent stage. Accordingly, filamentous algae poly-culture was exploited for waste nutrient capturing and biofuel feedstock generation. These nutrients were recovered and reused as a concentrated supplement for potentially high-value microalgae.</description><subject>Agriculture</subject><subject>Algal Turf Scrubber</subject><subject>Anaerobic digestion centrate</subject><subject>Anaerobiosis</subject><subject>Biodegradation, Environmental</subject><subject>Biofuels</subject><subject>Biogas production</subject><subject>Biomass</subject><subject>Bioreactors - microbiology</subject><subject>Chlorella - growth & development</subject><subject>Chlorella - metabolism</subject><subject>Chlorella sorokiniana</subject><subject>Esters - metabolism</subject><subject>Fertilizers</subject><subject>Lipids - biosynthesis</subject><subject>Lipids - chemistry</subject><subject>Methane - biosynthesis</subject><subject>Microalgae - metabolism</subject><subject>Nitrogen - isolation & purification</subject><subject>Nitrogen, Phosphorus and trace element recycling</subject><subject>Phosphorus - isolation & purification</subject><subject>Seasons</subject><subject>Solubility</subject><subject>Volatilization</subject><subject>Waste Disposal, Fluid</subject><subject>Water Pollutants, Chemical - isolation & purification</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctu2zAQJIoWjZP2FwIee6hcvvTwrUWQPoAA7aE9ExS5tGlIoktSBvxb-cKu4jjXnohdzuzuzBByy9maM9582q_7EFMBu1sLrLG5Zly-IivetbISm7Z5TVZs07Cqq4W6Itc57xljkrfiLbkSbSu6TooVefy1O5WYYAQXTAlxotFTs03BzkOZE9A0T9F72p-oD4MZYSpxztQMWwP0EIdTdQH6mCjeNELZmQn_UnSzXSZ-pGZydJpLCsimCWw8Qjo9ETIWkzNYLWPC8eWEIRyCo1uYIGFv2tIx2BSf1r4jb7wZMrx_fm_In6_3v---Vw8_v_24-_JQWcXqUommF33ddL0z4EEpy4WQIDl0dqMY3xjfO8tqpzplTQeCKeFFzxV6JJXyvbwhH85zUcrfGXLRY8gWhgHloQead7JWTGEcCG3OULwx5wReH1IYUZbmTC956b2-5KWXvJY-8pB4-7xj7jGCF9olIAR8PgMAlR4DJJ0t2mgxLjSyaBfD_3b8A_wwsIQ</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Bohutskyi, Pavlo</creator><creator>Chow, Steven</creator><creator>Ketter, Ben</creator><creator>Fung Shek, Coral</creator><creator>Yacar, Dean</creator><creator>Tang, Yuting</creator><creator>Zivojnovich, Mark</creator><creator>Betenbaugh, Michael J.</creator><creator>Bouwer, Edward J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161201</creationdate><title>Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae</title><author>Bohutskyi, Pavlo ; Chow, Steven ; Ketter, Ben ; Fung Shek, Coral ; Yacar, Dean ; Tang, Yuting ; Zivojnovich, Mark ; Betenbaugh, Michael J. ; Bouwer, Edward J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-26b2b568bdaefe44c1223e31e8c94019afbdc05d484ca8e2042f2b14031344fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agriculture</topic><topic>Algal Turf Scrubber</topic><topic>Anaerobic digestion centrate</topic><topic>Anaerobiosis</topic><topic>Biodegradation, Environmental</topic><topic>Biofuels</topic><topic>Biogas production</topic><topic>Biomass</topic><topic>Bioreactors - microbiology</topic><topic>Chlorella - growth & development</topic><topic>Chlorella - metabolism</topic><topic>Chlorella sorokiniana</topic><topic>Esters - metabolism</topic><topic>Fertilizers</topic><topic>Lipids - biosynthesis</topic><topic>Lipids - chemistry</topic><topic>Methane - biosynthesis</topic><topic>Microalgae - metabolism</topic><topic>Nitrogen - isolation & purification</topic><topic>Nitrogen, Phosphorus and trace element recycling</topic><topic>Phosphorus - isolation & purification</topic><topic>Seasons</topic><topic>Solubility</topic><topic>Volatilization</topic><topic>Waste Disposal, Fluid</topic><topic>Water Pollutants, Chemical - isolation & purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohutskyi, Pavlo</creatorcontrib><creatorcontrib>Chow, Steven</creatorcontrib><creatorcontrib>Ketter, Ben</creatorcontrib><creatorcontrib>Fung Shek, Coral</creatorcontrib><creatorcontrib>Yacar, Dean</creatorcontrib><creatorcontrib>Tang, Yuting</creatorcontrib><creatorcontrib>Zivojnovich, Mark</creatorcontrib><creatorcontrib>Betenbaugh, Michael J.</creatorcontrib><creatorcontrib>Bouwer, Edward J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohutskyi, Pavlo</au><au>Chow, Steven</au><au>Ketter, Ben</au><au>Fung Shek, Coral</au><au>Yacar, Dean</au><au>Tang, Yuting</au><au>Zivojnovich, Mark</au><au>Betenbaugh, Michael J.</au><au>Bouwer, Edward J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>222</volume><spage>294</spage><epage>308</epage><pages>294-308</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted]
•Natural poly-culture of filamentous algae was grown in agricultural stormwater.•Filamentous algae biomass lipid content was below 2%.•Anaerobic digestion of whole filamentous algae or LEA yielded ∼0.2LCH4pergVS.•Macro- and micronutrients captured from stormwater were released into AD effluent.•AD effluent was successfully used for growth of lipid-accumulating C. sorokiniana.
An integrated system was implemented for water phytoremediation and biofuel production through sequential cultivation of filamentous algae followed by cultivation of lipid-producing microalgae Chlorella sorokiniana. Natural poly-culture of filamentous algae was grown in agricultural stormwater using the Algal Turf Scrubber®, harvested and subjected for lipid extraction and/or methane production using anaerobic digestion (AD). While filamentous algae lipid content was too low for feasible biodiesel production (<2%), both whole biomass and lipid-extracted algal residues (LEA) yielded ∼0.2LmethanepergVS at loading rates up to 5gVS/L-day. Importantly, essential macro-nutrients and trace elements captured from stormwater were released into the AD effluent as soluble nutrients and were successfully tested as fertilizer replacement for cultivation of lipid-accumulating C. sorokiniana in a subsequent stage. Accordingly, filamentous algae poly-culture was exploited for waste nutrient capturing and biofuel feedstock generation. These nutrients were recovered and reused as a concentrated supplement for potentially high-value microalgae.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27728832</pmid><doi>10.1016/j.biortech.2016.10.013</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2016-12, Vol.222, p.294-308 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835404101 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Agriculture Algal Turf Scrubber Anaerobic digestion centrate Anaerobiosis Biodegradation, Environmental Biofuels Biogas production Biomass Bioreactors - microbiology Chlorella - growth & development Chlorella - metabolism Chlorella sorokiniana Esters - metabolism Fertilizers Lipids - biosynthesis Lipids - chemistry Methane - biosynthesis Microalgae - metabolism Nitrogen - isolation & purification Nitrogen, Phosphorus and trace element recycling Phosphorus - isolation & purification Seasons Solubility Volatilization Waste Disposal, Fluid Water Pollutants, Chemical - isolation & purification |
title | Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytoremediation%20of%20agriculture%20runoff%20by%20filamentous%20algae%20poly-culture%20for%20biomethane%20production,%20and%20nutrient%20recovery%20for%20secondary%20cultivation%20of%20lipid%20generating%20microalgae&rft.jtitle=Bioresource%20technology&rft.au=Bohutskyi,%20Pavlo&rft.date=2016-12-01&rft.volume=222&rft.spage=294&rft.epage=308&rft.pages=294-308&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2016.10.013&rft_dat=%3Cproquest_cross%3E1835404101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835404101&rft_id=info:pmid/27728832&rft_els_id=S0960852416314109&rfr_iscdi=true |