Cancer Diagnosis and Imaging-Guided Photothermal Therapy Using a Dual-Modality Nanoparticle
To improve patient outcome and decrease overall health-care costs, highly sensitive and precise detection of a tumor is required for its accurate diagnosis and efficient therapy; however, this remains a challenge when using conventional single mode imaging. Here, we successfully designed a near-infr...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-11, Vol.8 (43), p.29232-29241 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To improve patient outcome and decrease overall health-care costs, highly sensitive and precise detection of a tumor is required for its accurate diagnosis and efficient therapy; however, this remains a challenge when using conventional single mode imaging. Here, we successfully designed a near-infrared (NIR)-response photothermal therapy (PTT) platform (Au@MSNs-ICG) for the location, diagnosis, and NIR/computer tomography (CT) bimodal imaging-guided PTT of tumor tissues, using gold (Au) nanospheres coated with indocyanine green (ICG)-loaded mesoporous silica nanoparticles (MSNs), which would have high sensitivity and precision. The nanoparticles (NPs) exhibited good monodispersity, fluorescence stability, biocompatibility, and NIR/CT signaling and had a preferable temperature response under NIR laser irradiation in vitro or in vivo. Using a combination of NIR/CT imaging and PTT treatment, the tumor could be accurately positioned and thoroughly eradicated in vivo by Au@MSNs-ICG injection. Hence, the multifunctional NPs could play an important role in facilitating the accurate treatment of tumors in future clinical applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.6b06883 |