Cancer Diagnosis and Imaging-Guided Photothermal Therapy Using a Dual-Modality Nanoparticle

To improve patient outcome and decrease overall health-care costs, highly sensitive and precise detection of a tumor is required for its accurate diagnosis and efficient therapy; however, this remains a challenge when using conventional single mode imaging. Here, we successfully designed a near-infr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-11, Vol.8 (43), p.29232-29241
Hauptverfasser: Zeng, Chaoting, Shang, Wenting, Liang, Xiaoyuan, Liang, Xiao, Chen, Qingshan, Chi, Chongwei, Du, Yang, Fang, Chihua, Tian, Jie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve patient outcome and decrease overall health-care costs, highly sensitive and precise detection of a tumor is required for its accurate diagnosis and efficient therapy; however, this remains a challenge when using conventional single mode imaging. Here, we successfully designed a near-infrared (NIR)-response photothermal therapy (PTT) platform (Au@MSNs-ICG) for the location, diagnosis, and NIR/computer tomography (CT) bimodal imaging-guided PTT of tumor tissues, using gold (Au) nanospheres coated with indocyanine green (ICG)-loaded mesoporous silica nanoparticles (MSNs), which would have high sensitivity and precision. The nanoparticles (NPs) exhibited good monodispersity, fluorescence stability, biocompatibility, and NIR/CT signaling and had a preferable temperature response under NIR laser irradiation in vitro or in vivo. Using a combination of NIR/CT imaging and PTT treatment, the tumor could be accurately positioned and thoroughly eradicated in vivo by Au@MSNs-ICG injection. Hence, the multifunctional NPs could play an important role in facilitating the accurate treatment of tumors in future clinical applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.6b06883