Effects of Differentiation and Antisenescence from BMSCs to Hepatocy-Like Cells of the PAAm-IGF-1/TNF‑α Biomaterial

Aiming at the cells’ differentiation phenomenon and senescence problem in liver tissue engineering, this work is designed to synthesize three different chargeable polymers (polypropylene acid (PAAc), polyethylene glycol (PEG), and polypropylene amine (PAAm)) coimmobilized by the insulin-like growth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-10, Vol.8 (40), p.26638-26647
Hauptverfasser: Yang, Runcai, Wu, Lifang, Chen, Jiehong, Chen, Wuya, Zhang, Lin, Zhang, Li, You, Rong, Yin, Liang, Li, Chu-Hua, Guan, Yan-Qing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming at the cells’ differentiation phenomenon and senescence problem in liver tissue engineering, this work is designed to synthesize three different chargeable polymers (polypropylene acid (PAAc), polyethylene glycol (PEG), and polypropylene amine (PAAm)) coimmobilized by the insulin-like growth factor 1 (IGF-1) and tumor necrosis factor-α (TNF-α). We explore the hepatocyte differentiation effect and the antisenecence effect of PSt-PAAm-IGF-1/TNF-α biomaterial which was selected from the three different chargeable polymers in bone marrow mesenchymal stem cells (BMSCs). Our work will establish a model for studying the biochemical molecular regulation mechanism and signal transduction pathway of cell senescence in liver tissue engineering, which provide a molecular basis for developing biomaterials for liver tissue engineering.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.6b10377