Characterization of a Biomimetic Mesophase Composed of Nonionic Surfactants and an Aqueous Solvent

We have investigated the physical and biomimetic properties of a sponge (L3) phase composed of pentaethylene glycol monododecyl ether (C12E5), a nonionic surfactant, an aqueous solvent, and a cosurfactant. The following cosurfactants, commonly used for solubilizing membrane proteins, were incorporat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2016-10, Vol.32 (40), p.10268-10275
Hauptverfasser: Adrien, V, Rayan, G, Reffay, M, Porcar, L, Maldonado, A, Ducruix, A, Urbach, W, Taulier, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated the physical and biomimetic properties of a sponge (L3) phase composed of pentaethylene glycol monododecyl ether (C12E5), a nonionic surfactant, an aqueous solvent, and a cosurfactant. The following cosurfactants, commonly used for solubilizing membrane proteins, were incorporated: n-octyl-β-d-glucopyranoside (β-OG), n-dodecyl-β-d-maltopyranoside (DDM), 4-cyclohexyl-1-butyl-β-d-maltoside (CYMAL-4), and 5-cyclohexyl-1-pentyl-β-d-maltoside (CYMAL-5). Partial phase diagrams of these systems were created. The L3 phase was characterized using crossed polarizers, diffusion of a fluorescent probe by fluorescence recovery after pattern photobleaching (FRAPP), and freeze fracture electron microscopy (FFEM). By varying the hydration of the phase, we were able to tune the distance between adjacent bilayers. The characteristic distance (d b) of the phase was obtained from small angle scattering (SAXS/SANS) as well as from FFEM, which yielded complementary d b values. These d b values were neither affected by the nature of the cosurfactant nor by the addition of membrane proteins. These findings illustrate that a biomimetic surfactant sponge phase can be created in the presence of several common membrane protein-solubilizing detergents, thus making it a versatile medium for membrane protein studies.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.6b02744