Does Acid Etching Morphologically and Chemically Affect Lithium Disilicate Glass Ceramic Surfaces?
Background This study evaluated the surface morphology, chemical composition and adhesiveness of lithium disilicate glass ceramic after acid etching with hydrofluoric acid or phosphoric acid. Methods Lithium disilicate glass ceramic specimens polished by 600-grit silicon carbide paper were subjected...
Gespeichert in:
Veröffentlicht in: | Journal of applied biomaterials & functional materials 2017-01, Vol.15 (1), p.93-100 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
This study evaluated the surface morphology, chemical composition and adhesiveness of lithium disilicate glass ceramic after acid etching with hydrofluoric acid or phosphoric acid.
Methods
Lithium disilicate glass ceramic specimens polished by 600-grit silicon carbide paper were subjected to one or a combination of these surface treatments: airborne particle abrasion with 50-μm alumina (AA), etching with 5% hydrofluoric acid (HF) or 36% phosphoric acid (Phos), and application of silane coupling agent (Si). Stainless steel rods of 3.6-mm diameter and 2.0-mm height were cemented onto treated ceramic surfaces with a self-adhesive resin cement (Clearfil SA Cement). Shear bond strengths between ceramic and cement were measured after 24-hour storage in 37°C distilled water.
Results
SEM images of AA revealed the formation of conventional microretentive grooves, but acid etching with HF or Phos produced a porous surface. Bond strengths of AA+HF+Si (28.1 ± 6.0 MPa), AA+Phos+Si (17.5 ± 4.1 MPa) and HF+Si (21.0 ± 3.0 MPa) were significantly greater than those of non-pretreated controls with Si (9.7 ± 3.7 MPa) and without Si (4.1 ± 2.4 MPa) (p |
---|---|
ISSN: | 2280-8000 2280-8000 |
DOI: | 10.5301/jabfm.5000303 |