A novel role of G protein-coupled receptor kinase 5 in urotensin II-stimulated cellular hypertrophy in H9c2UT cells
Urotensin II (UII) is a neural hormone that induces cardiac hypertrophy and may be involved in the pathogenesis of cardiac remodeling and heart failure. Hypertrophy has been linked to histone deacetylase 5 (HDAC5) phosphorylation and nuclear factor κB (NF-κB) translocation, both of which are predomi...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2016-11, Vol.422 (1-2), p.151-160 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Urotensin II (UII) is a neural hormone that induces cardiac hypertrophy and may be involved in the pathogenesis of cardiac remodeling and heart failure. Hypertrophy has been linked to histone deacetylase 5 (HDAC5) phosphorylation and nuclear factor κB (NF-κB) translocation, both of which are predominantly mediated by G protein-coupled receptor kinase 5 (GRK5). In the present study, we found that UII rapidly and strongly stimulated nuclear export of HDAC5 and nuclear import of NF-κB in H9c2 cells overexpressing the urotensin II receptor (H9c2
UT
). Hence, we hypothesized that GRK5 and its signaling pathway may play a role in UII-mediated cellular hypertrophy. H9c2
UT
cells were transduced with a GRK5 small hairpin RNA interference recombinant lentivirus, resulting in the down-regulation of GRK5. Under UII stimulation, reduced levels of GRK5 in H9c2
UT
cells led to suppression of UII-mediated HDAC5 phosphorylation and activation of the NF-κB signaling pathway. In contrast, UII-mediated activations of ERK1/2 and GSK3α/β were not affected by down-regulation of GRK5. In a cellular hypertrophy assay, down-regulation of GRK5 significantly suppressed UII-mediated hypertrophy of H9c2
UT
cells. Furthermore, UII-mediated cellular hypertrophy was inhibited by amlexanox, a selective GRK5 inhibitor, in H9c2
UT
cells and neonatal cardiomyocytes. Our results suggest that GRK5 may be involved in a UII-mediated hypertrophic response via activation of NF-κB and HDAC5 at least in part by ERK1/2 and GSK3α/β-independent pathways. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-016-2814-y |