Effect of Ring Size and Migratory Groups on [1,n] Suprafacial Shift Reactions. Confirmation of Aromatic and Antiaromatic Transition-State Character by Ring-Current Analysis

Suprafacial sigmatropic shift reactions of 5-substituted cyclopentadienes, 3-substituted cyclopropenes, and 7-substituted cycloheptatrienes have been studied computationally at the MP2/6-31+G* level for structures and energetics and with the ipsocentric method at the CHF/6-31G** level to calculate c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2016-10, Vol.81 (19), p.8777-8788
Hauptverfasser: Clarke, Joseph, Fowler, Patrick W, Gronert, Scott, Keeffe, James R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suprafacial sigmatropic shift reactions of 5-substituted cyclopentadienes, 3-substituted cyclopropenes, and 7-substituted cycloheptatrienes have been studied computationally at the MP2/6-31+G* level for structures and energetics and with the ipsocentric method at the CHF/6-31G** level to calculate current–density maps. The hydrogen shifts in cyclopentadienes have a diatropic ring current indicating aromatic, cyclopentadienide anion character. This result stands in contrast to the fluorine shift in 5-fluorocyclopentadiene which requires much more energy and has a paratropic ring current in the TS pointing to antiaromatic, cyclopentadienyl cation character. [1,3] hydrogen shifts in cyclopropenes are very difficult, passing through transition states that have an extended C–C bond. For 3-fluorocyclopropene, the [1,3] fluorine shift is much easier than the hydrogen shift. For 7-fluorocycloheptatriene, the [1,7] hydrogen shift is predicted but requires very high energy and has a paratropic ring current and antiaromatic character. The [1,7] suprafacial fluorine shift is relatively easy, having a TS with cycloheptatrienyl cation character. Patterns of currents, and the reversal for H and F migration, are rationalized by orbital analysis based on the ipsocentric method. Calculated charges and structural features for reactants and transition states support these conclusions.
ISSN:0022-3263
1520-6904
DOI:10.1021/acs.joc.6b01261