Enabling Oral SN38-Based Chemotherapy with a Combined Lipophilic Prodrug and Self-Microemulsifying Drug Delivery System
Oral chemotherapy with SN38 is restricted by its poor solubility in gastrointestinal (GI) fluids and low permeability. Here we report the oral delivery of SN38 by a combined lipophilic prodrug and lipid-based formulation strategy. A lead lipophilic prodrug of SN38, SN38-undecanoate (SN38-unde20), wa...
Gespeichert in:
Veröffentlicht in: | Molecular pharmaceutics 2016-10, Vol.13 (10), p.3518-3525 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oral chemotherapy with SN38 is restricted by its poor solubility in gastrointestinal (GI) fluids and low permeability. Here we report the oral delivery of SN38 by a combined lipophilic prodrug and lipid-based formulation strategy. A lead lipophilic prodrug of SN38, SN38-undecanoate (SN38-unde20), was incorporated into a self-microemulsifying drug delivery system (SMEDDS) for improved in vitro and in vivo performance. The formulation was purposefully designed and optimized with long chain lipids and lipid-based nonionic surfactants to maximize drug solubilization in GI conditions, facilitate trans-membrane permeation, and hence improve oral absorption. SN38-unde20-SMEDDS significantly increased (>7 fold) drug solubilization in the aqueous phase compared to unformulated drug during in vitro lipolysis and drug solubilization studies. In an orally dosed in vivo pharmacokinetics study in a Dark Agouti rat model, the SN38-unde20-SMEDDS formulation confirmed oral absorption of SN38-unde20 and subsequent reconversion to SN38. Importantly, the overall plasma exposure of SN38 (AUC0→∞) was equivalent for orally dosed SN38-unde20-SMEDDS in comparison with a parenteral dose of SN38-unde20-SMEDDS and SN38 at an identical dose (10 mg/kg). The combination of lipophilic prodrug along with an optimal delivery carrier is demonstrated to enable effective oral delivery of challenging chemotherapeutic compounds that are conventionally dosed by injection. |
---|---|
ISSN: | 1543-8384 1543-8392 |
DOI: | 10.1021/acs.molpharmaceut.6b00591 |