Demethyleugenol β‑Glucopyranoside Isolated from Agastache rugosa Decreases Melanin Synthesis via Down-regulation of MITF and SOX9

Agastache rugosa (Fisch. & C. A. Mey.) Kuntze has been well-known for its antioxidative properties. This study investigated the anti-melanogenesis effect of demethyleugenol β-d-glucopyranoside (1) from A. rugosa by studying molecular regulation of melanogenesis in melan-a mouse melanocytes and n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2016-10, Vol.64 (41), p.7733-7742
Hauptverfasser: Lee, Taek Hwan, Park, SeonJu, Yoo, Guijae, Jang, Cheongyun, Kim, Mi-hyun, Kim, Seung Hyun, Kim, Sun Yeou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Agastache rugosa (Fisch. & C. A. Mey.) Kuntze has been well-known for its antioxidative properties. This study investigated the anti-melanogenesis effect of demethyleugenol β-d-glucopyranoside (1) from A. rugosa by studying molecular regulation of melanogenesis in melan-a mouse melanocytes and normal human epidermal melanocytes (NHEMs) and in in vivo models. The SRY (sex-determining region on the Y chromosome)-related high-mobility group (HMG) box 9 (SOX9), one of the critical factors that affect skin pigmentation, is up-regulated. Interestingly, 1 down-regulated the expression of SOX9 and microphthalmia-associated transcription factor (MITF). Reduction of these two transcription factors resulted in a decrease in melanogenic enzymes such as tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase. As a result, 1 significantly inhibited melanin synthesis in melan-a mouse melanocytes and NHEMs. In addition, the anti-melanogenic effect of 1 was confirmed in zebrafish and reconstructed skin tissue models. In conclusion, 1, as a potent SOX9 regulator, ameliorates skin pigmentation.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.6b03256