Yolk–Shell Ni@SnO2 Composites with a Designable Interspace To Improve the Electromagnetic Wave Absorption Properties

In this study, yolk–shell Ni@SnO2 composites with a designable interspace were successfully prepared by the simple acid etching hydrothermal method. The Ni@void@SnO2 composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scannin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-10, Vol.8 (42), p.28917-28925
Hauptverfasser: Zhao, Biao, Guo, Xiaoqin, Zhao, Wanyu, Deng, Jiushuai, Shao, Gang, Fan, Bingbing, Bai, Zhongyi, Zhang, Rui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, yolk–shell Ni@SnO2 composites with a designable interspace were successfully prepared by the simple acid etching hydrothermal method. The Ni@void@SnO2 composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicate that interspaces exist between the Ni cores and SnO2 shells. Moreover, the void can be adjusted by controlling the hydrothermal reaction time. The unique yolk–shell Ni@void@SnO2 composites show outstanding electromagnetic wave absorption properties. A minimum reflection loss (RLmin) of −50.2 dB was obtained at 17.4 GHz with absorber thickness of 1.5 mm. In addition, considering the absorber thickness, minimal reflection loss, and effective bandwidth, a novel method to judge the effective microwave absorption properties is proposed. On the basis of this method, the best microwave absorption properties were obtained with a 1.7 mm thick absorber layer (RLmin= −29.7 dB, bandwidth of 4.8 GHz). The outstanding electromagnetic wave absorption properties stem from the unique yolk–shell structure. These yolk–shell structures can tune the dielectric properties of the Ni@air@SnO2 composite to achieve good impedance matching. Moreover, the designable interspace can induce interfacial polarization, multiple reflections, and microwave plasma.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.6b10886