Preferred Hydrogen-Bonding Partners of Cysteine: Implications for Regulating Cys Functions
The hydrogen-bonding interactions of cysteine, which can serve as a hydrogen-bond donor and/or acceptor, play a central role in cysteine’s diverse functional roles in proteins. They affect the balance between the neutral thiol (SH) or thiolate (S–) and the charge distribution in the rate-limiting tr...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2016-10, Vol.120 (39), p.10288-10296 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hydrogen-bonding interactions of cysteine, which can serve as a hydrogen-bond donor and/or acceptor, play a central role in cysteine’s diverse functional roles in proteins. They affect the balance between the neutral thiol (SH) or thiolate (S–) and the charge distribution in the rate-limiting transition state of a reaction. Despite their importance, no study has determined the preferred hydrogen-bonding partners of cysteine serving as a hydrogen-bond donor or acceptor. By computing the free energy for displacing a peptide backbone hydrogen-bonded to cysteine with amino acid side chains in various protein environments, we have evaluated how the strength of the hydrogen bond to the cysteine thiol/thiolate depends on its hydrogen-bonding partner and its local environment. The predicted hydrogen-bonding partners preferred by cysteine are consistent with the hydrogen-bonding interactions made by cysteines in 9138 nonredundant X-ray structures. Our results suggest a mechanism to regulate the reactivity of cysteines and a strategy to design drugs based on the hydrogen-bonding preference of cysteine. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.6b08109 |