Controlled bone formation using ultrasound-triggered release of BMP-2 from liposomes

Recombinant human bone morphogenetic protein 2 (rhBMP-2) is used clinically to enhance implant-mediated bone regeneration. However, there are risks associated with the high rhBMP-2 dose that is required in the implant to mitigate diffusional loss over the therapeutic timespan. On-demand, localized c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2016-12, Vol.243, p.99-108
Hauptverfasser: Crasto, Gazelle J., Kartner, Norbert, Reznik, Nikita, Spatafora, Michael V., Chen, Hanje, Williams, Ross, Burns, Peter N., Clokie, Cameron, Manolson, Morris F., Peel, Sean A.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recombinant human bone morphogenetic protein 2 (rhBMP-2) is used clinically to enhance implant-mediated bone regeneration. However, there are risks associated with the high rhBMP-2 dose that is required in the implant to mitigate diffusional loss over the therapeutic timespan. On-demand, localized control over delivery of rhBMP-2, days after implantation, would therefore be an attractive solution in the area of bone repair and reconstruction, yet this has posed a significant challenge, with little data to support in vivo efficacy to date. To address this, we have developed novel liposome-rhBMP-2 nanocomplexes that release rhBMP-2 in response to non-thermogenic, clinical diagnostic ultrasound exposure. In vitro validation shows that rhBMP-2 release is in proportion to applied ultrasound pressure and duration of exposure. Moreover, here we show in vivo validation of this ultrasound-triggered rhBMP-2 delivery system in a standard mouse bone regeneration model. Implanted into hindleg muscles, the liposome-rhBMP-2 nanocomplexes induced local bone formation only after ultrasound exposure. Such post-implantation control of delivery has potential to improve the safety, efficacy and cost of rhBMP-2 use in bone reconstruction. Furthermore, this first proof-of-concept demonstration of in vivo efficacy for ultrasound-triggered liposomal delivery of rhBMP-2 has broader implications for tunable delivery of a variety of drugs and biologics in medicine and tissue engineering. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2016.09.032