Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method : plant development and surfactant are important in optimizing transformation efficiency

Transgenic radish (Raphanus sativus L. longipinnatus Bailey) plants were produced from the progeny of plants which were dipped into a suspension of Agrobacterium carrying both the beta-glucuronidase (gusA) gene and a gene for resistance to the herbicide Basta (bar) between T-DNA border sequences. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transgenic research 2001-08, Vol.10 (4), p.363-371
Hauptverfasser: CURTIS, Ian S, NAM, Hong G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transgenic radish (Raphanus sativus L. longipinnatus Bailey) plants were produced from the progeny of plants which were dipped into a suspension of Agrobacterium carrying both the beta-glucuronidase (gusA) gene and a gene for resistance to the herbicide Basta (bar) between T-DNA border sequences. The importance of development of the floral-dipped plant and presence of surfactant in the inoculation medium were evaluated in terms of transgenic plant production. Plants dipped at the primary bolt stage of growth, into a suspension of Agrobacterium containing 0.05% (v/v) Silwet L-77 resulted in optimum transformation efficiency, with 1.4% from 1110 seeds. The presence of Pluronic F-68 or Tween 20 in the inoculation medium was beneficial towards transgenic plant output compared to treatments without surfactant. Putative transformed T1 plants were efficiently selected by spraying with 0.03% (v/v) Basta and all herbicide-resistant plants tested positive for GUS activity when analysed both histochemically and fluorometrically. Southern analysis revealed that both the gusA and bar genes integrated into the genome of transformed plants and segregated as dominant Mendelian traits. These results demonstrate that radish can be genetically modified for the improvement of this important vegetable crop.
ISSN:0962-8819
1573-9368
DOI:10.1023/A:1016600517293