Zinc-Reduced Mesoporous TiOx Li-Ion Battery Anodes with Exceptional Rate Capability and Cycling Stability

We demonstrate a unique synthetic route for oxygen‐deficient mesoporous TiOx by a redox–transmetalation process by using Zn metal as the reducing agent. The as‐obtained materials have significantly enhanced electronic conductivity; 20 times higher than that of as‐synthesized TiO2 material. Moreover,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry, an Asian journal an Asian journal, 2016-12, Vol.11 (23), p.3382-3388
Hauptverfasser: Song, Woo-Jin, Yoo, Seungmin, Lee, Jung-In, Han, Jung-Gu, Son, Yeonguk, Kim, Sun-I, Shin, Myoungsoo, Choi, Sinho, Jang, Ji-Hyun, Cho, Jaephil, Choi, Nam-Soon, Park, Soojin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a unique synthetic route for oxygen‐deficient mesoporous TiOx by a redox–transmetalation process by using Zn metal as the reducing agent. The as‐obtained materials have significantly enhanced electronic conductivity; 20 times higher than that of as‐synthesized TiO2 material. Moreover, electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) measurements are performed to validate the low charge carrier resistance of the oxygen‐deficient TiOx. The resulting oxygen‐deficient TiOx battery anode exhibits a high reversible capacity (∼180 mA h g−1 at a discharge/charge rate of 1 C/1 C after 400 cycles) and an excellent rate capability (∼90 mA h g−1 even at a rate of 10 C). Also, the full cell, which is coupled with a LiCoO2 cathode material, exhibits an outstanding rate capability (>75 mA h g−1 at a rate of 3.0 C) and maintains a reversible capacity of over 100 mA h g−1 at a discharge/charge of 1 C/1 C for 300 cycles. Metallothermic reduction with Zn: Zinc‐reduced TiOx powder is shown to exhibit high electrical conductivity, which is twenty times higher than that of as‐synthesized TiO2 powder. The resulting oxygen‐deficient TiOx battery anode shows a high rate performance (∼55 mA h g−1 even at a rate of 30 C) and a high reversible capacity (∼180 mA h g−1 at a rate of 1 C/1 C after 400 cycles).
ISSN:1861-4728
1861-471X
DOI:10.1002/asia.201601061