Structure of 2C-Methyl-D-Erythritol 2,4-Cyclodiphosphate Synthase: An Essential Enzyme for Isoprenoid Biosynthesis and Target for Antimicrobial Drug Development

The crystal structure of the zinc enzyme Escherichia coli 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase in complex with cytidine 5′-diphosphate and Mn2+has been determined to 1.8-Å resolution. This enzyme is essential in E. coli and participates in the nonmevalonate pathway of isoprenoid bios...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-05, Vol.99 (10), p.6591-6596
Hauptverfasser: Kemp, Lauris E., Bond, Charles S., Hunter, William N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The crystal structure of the zinc enzyme Escherichia coli 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase in complex with cytidine 5′-diphosphate and Mn2+has been determined to 1.8-Å resolution. This enzyme is essential in E. coli and participates in the nonmevalonate pathway of isoprenoid biosynthesis, a critical pathway present in some bacterial and apicomplexans but distinct from that used by mammals. Our analysis reveals a homotrimer, built around a β prism, carrying three active sites, each of which is formed in a cleft between pairs of subunits. Residues from two subunits recognize and bind the nucleotide in an active site that contains a Zn2+with tetrahedral coordination. A Mn2+, with octahedral geometry, is positioned between the α and β phosphates acting in concert with the Zn2+to align and polarize the substrate for catalysis. A high degree of sequence conservation for the enzymes from E. coli, Plasmodium falciparum, and Mycobacterium tuberculosis suggests similarities in secondary structure, subunit fold, quaternary structure, and active sites. Our model will therefore serve as a template to facilitate the structure-based design of potential antimicrobial agents targeting two of the most serious human diseases, tuberculosis and malaria.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.102679799