Connectivity and biocomplexity in waterbodies of riverine floodplains
1. In river corridors, water plays a key role in connecting various landscape patches. This `hydrological connectivity' operates on the four dimensions of fluvial hydrosystems: longitudinal, lateral, vertical, and temporal. The present review focuses on: (1) lateral connectivity that links the...
Gespeichert in:
Veröffentlicht in: | Freshwater biology 2002-04, Vol.47 (4), p.761-776 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1. In river corridors, water plays a key role in connecting various landscape patches. This `hydrological connectivity' operates on the four dimensions of fluvial hydrosystems: longitudinal, lateral, vertical, and temporal. The present review focuses on: (1) lateral connectivity that links the main course of a river with floodplain waterbodies; and (2) vertical connectivity, the exchanges between the surface and groundwater via infiltration into the alluvial aquifer and exfiltration of phreatic water from the hillslope aquifer.
2. The biocomplexity of fluvial hydrosystems results from interactions between processes operating at various spatial and temporal scales. Differences in the nature and intensity of hydrological connectivity contribute to the spatial heterogeneity of riverine floodplains, which results in high alpha, beta and gamma diversity. Differences in connectivity also provide complementary habitats that are required for the parts of life cycles and life‐cycles of some species. Hydrological connectivity also produces antagonistic effects, even within the same waterbody.
3. Two temporal scales are distinguished in connectivity dynamics. River level fluctuations within years lead to a pulsing connectivity that drives the functioning of floodplain ecosystems, namely the exchange of organic matter and inorganic nutrients and the shift between production and transport phases. On the scale of decades to centuries, the interactions between various processes increase the biocomplexity of floodplains; for example, river dynamics, which create highly connected waterbodies, compensate for succession that tends towards disconnection. Alternatively, river‐bed incision leads to the reduction of fluvial dynamics and to the disconnection of waterbodies, although river incision may increase vertical connectivity where waterbodies are supplied by the hillslope aquifer. |
---|---|
ISSN: | 0046-5070 1365-2427 |
DOI: | 10.1046/j.1365-2427.2002.00905.x |