Genetics and population improvement of resistance to bacterial soft rot in Chinese cabbage
Resistance to bacterial soft rot caused by Erwinia carotovora subsp. carotovora is a quantitative trait. The narrow-sense heritability was from 42% to 60% in the studied populations. Griffing's diallel analysis and generation mean analysis indicated that additive genetic effects were most signi...
Gespeichert in:
Veröffentlicht in: | Euphytica 2001-01, Vol.117 (3), p.197-207 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Resistance to bacterial soft rot caused by Erwinia carotovora subsp. carotovora is a quantitative trait. The narrow-sense heritability was from 42% to 60% in the studied populations. Griffing's diallel analysis and generation mean analysis indicated that additive genetic effects were most significant, and the resistant sources involved in this study appeared to have different genes or alleles. Recurrent phenotypic selection was used for improving the resistance level by combining different resistance genes from the selected genotypes of Chinese cabbage. After 3 cycles of recurrent selection, the level of resistance increased markedly. When the cycle 3 population was compared with the cycle 0 population, the mean disease severity rating was reduced 38% from 6.3 to 3.9, and the percentage of plant survival increased from 65% to 97% based on the mean of two years experiments using mist-chamber seedling inoculation methods. The improvement of resistance was also demonstrated in field assays.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0014-2336 1573-5060 |
DOI: | 10.1023/A:1026541724001 |