Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.)

Root morphology under well-watered conditions sampled on two occasions and under low-moisture stress was studied in a randomly chosen subset of 56 doubled haploid lines derived from a cross between IR64 and Azucena at two growth stages during the vegetative stage. A molecular map of the same populat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Euphytica 2000-01, Vol.112 (1), p.69-78
Hauptverfasser: Hemamalini, G.S, Shashidhar, H.E, Hittalmani, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Root morphology under well-watered conditions sampled on two occasions and under low-moisture stress was studied in a randomly chosen subset of 56 doubled haploid lines derived from a cross between IR64 and Azucena at two growth stages during the vegetative stage. A molecular map of the same population served as the basis for locating QTLs controlling root morphology and associated traits. The region flanking the RFLP markers RZ730 and RZ801 on chromosome 1 were associated with plant height in all three sampling environments. This position corresponds to sd-1 a semi-dwarfing gene. A total of 15 QTL were detected at the two developmental stages, of which only three QTL were common. Region flanked by RG157 and RZ318 (chromosome 2) contained QTL for root thickness under two different developmental stages. In total, 21 QTL for different traits were detected under low-moisture stress condition. While two QTL for plant height on chromosomes 1 and 3 were common, none of the loci for root morphological traits was common between the two different moisture regimes. The chromosomal segment between RG171 and RG157 contained QTL controlling tiller number per plant, total root length, root volume and total root number per plant. Absence of common QTL for root traits between two developmental stages and two moisture regimes suggests the existence of parallel genetic pathways operating at different growth stages and moisture regimes. Root volume and total root number per plant decreased significantly under stress, whereas maximum root length and plant height exhibited non-significant increases under stress.
ISSN:0014-2336
1573-5060
DOI:10.1023/A:1003854224905