The Ability to Develop an Activity That Transfers Histones onto Sperm Chromatin Is Acquired with Meiotic Competence during Oocyte Growth
Following fertilization, the oocyte remodels the sperm chromatin into the male pronucleus. As a component of this process, during meiotic maturation, oocytes develop an activity that transfers histones onto sperm DNA. To further characterize this activity, we tested whether oocytes at different stag...
Gespeichert in:
Veröffentlicht in: | Developmental biology 2002-01, Vol.241 (1), p.195-206 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following fertilization, the oocyte remodels the sperm chromatin into the male pronucleus. As a component of this process, during meiotic maturation, oocytes develop an activity that transfers histones onto sperm DNA. To further characterize this activity, we tested whether oocytes at different stages of growth could, upon entry into metaphase of maturation, transfer histones onto sperm DNA, as judged by chromatin morphology and immunocytochemistry. Meiotically competent growing oocytes, which spontaneously enter metaphase upon culture, tranferred histones onto sperm chromatin, whereas incompetent oocytes did not, even when treated with okadaic acid to induce germinal vesicle breakdown (GVBD) and chromosome condensation. When incompetent oocytes were cultured until they acquired the ability to undergo GVBD, only a small proportion also developed histone-transfer activity during maturation. However, this proportion significantly increased when the oocytes were cultured as granulosa–oocyte complexes. The failure of histone-transfer activity to develop in incompetent oocytes treated with okadaic acid was not linked to low H1 kinase activity nor rescued by injected histones. Because competent, but not incompetent, oocytes produce natural calcium oscillations, incompetent oocytes were exposed to SrCl2. One-third of treated oocytes produced at least one Ca2+ oscillation and, following insemination, the same proportion transferred histones onto sperm DNA. Histone transfer did not occur in oocytes pretreated with the Ca2+ chelator, BAPTA-AM. These results indicate that the ability to develop histone-transfer activity is acquired by growing oocytes near the time of meiotic competence, that it is separable from this event, and that it may be regulated through a Ca2+-dependent process. |
---|---|
ISSN: | 0012-1606 1095-564X |
DOI: | 10.1006/dbio.2001.0499 |