Control of Synaptic Strength by Glial TNFα

Activity-dependent modulation of synaptic efficacy in the brain contributes to neural circuit development and experience-dependent plasticity. Although glia are affected by activity and ensheathe synapses, their influence on synaptic strength has largely been ignored. Here, we show that a protein pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2002-03, Vol.295 (5563), p.2282-2285
Hauptverfasser: Beattle, Eric C., Stellwagen, David, Morishita, Wade, Bresnahan, Jacqueline C., Ha, Byeong Keun, von Zastrow, Mark, Beattie, Michael S., Malenka, Robert C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activity-dependent modulation of synaptic efficacy in the brain contributes to neural circuit development and experience-dependent plasticity. Although glia are affected by activity and ensheathe synapses, their influence on synaptic strength has largely been ignored. Here, we show that a protein produced by glia, tumor necrosis factor α (TNFα), enhances synaptic efficacy by increasing surface expression of AMPA receptors. Preventing the actions of endogenous TNFα has the opposite effects. Thus, the continual presence of TNFα is required for preservation of synaptic strength at excitatory synapses. Through its effects on AMPA receptor trafficking, TNFα may play roles in synaptic plasticity and modulating responses to neural injury.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1067859